Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Estrogen receptor β exerts tumor repressive functions in human malignant pleural mesothelioma via EGFR inactivation and affects response to gefitinib.

  • Giulia Pinton‎ et al.
  • PloS one‎
  • 2010‎

The role of estrogen and estrogen receptors in oncogenesis has been investigated in various malignancies. Recently our group identified estrogen receptor beta (ERβ) expression as an independent prognostic factor in the progression of human Malignant Pleural Mesothelioma (MMe), but the underlying mechanism by which ERβ expression in tumors determines clinical outcome remains largely unknown. This study is aimed at investigating the molecular mechanisms of ERβ action in MMe cells and disclosing the potential translational implications of these results.


Protein kinase D1 modulates aldosterone-induced ENaC activity in a renal cortical collecting duct cell line.

  • Victoria McEneaney‎ et al.
  • Molecular and cellular endocrinology‎
  • 2010‎

Aldosterone treatment of M1-CCD cells stimulated an increase in epithelial Na(+) channel (ENaC) alpha-subunit expression that was mainly localized to the apical membrane. PKD1-suppressed cells constitutively expressed ENaCalpha at low abundance, with no increase after aldosterone treatment. In the PKD1-suppressed cells, ENaCalpha was mainly localized proximal to the basolateral surface of the epithelium both before and after aldosterone treatment. Apical membrane insertion of ENaCbeta in response to aldosterone treatment was also sensitive to PKD1 suppression as was the aldosterone-induced rise in the amiloride-sensitive, trans-epithelial current (I(TE)). The interaction of the mineralocorticoid receptor (MR) with specific elements in the promoters of aldosterone responsive genes is stabilized by ligand interaction and phosphorylation. PKD1 suppression inhibited aldosterone-induced SGK-1 expression. The nuclear localization of MR was also blocked by PKD1 suppression and MEK antagonism implicating both these kinases in MR nuclear stabilization. PKD1 thus modulates aldosterone-induced ENaC activity through the modulation of sub-cellular trafficking and the stabilization of MR nuclear localization.


Estrogen increases ENaC activity via PKCδ signaling in renal cortical collecting duct cells.

  • Yamil R Yusef‎ et al.
  • Physiological reports‎
  • 2014‎

The most active estrogen, 17β-estradiol (E2), has previously been shown to stimulate a female sex-specific antisecretory response in the intestine. This effect is thought to contribute to the increase in whole body extracellular fluid (ECF) volume which occurs in high estrogen states, such as in the implantation window during estrous cycle. The increased ECF volume may be short-circuited by a renal compensation unless estrogen exerts a proabsorptive effect in the nephron. Thus, the effect of E2 on ENaC in kidney cortical collecting duct (CCD) cells is of interest to understand estrogen regulation of ECF volume. Previous studies showed a rapid stimulatory effect of estrogen on ENaC in bronchial epithelium. In this study we examined if such a rapid effect on Na(+) absorption could occur in the kidney. Experiments were carried out on murine M1-CCD cell cultures. E2 (25 nmol/L) treatment caused a rapid-onset (<15 min) and sustained increase in the amiloride-sensitive Na(+) current (INa) in CCD monolayers mounted in Ussing chambers (control, 1.9 ± 0.2 μA/cm(2); E2, 4.7 ± 0.3 μA/cm(2); n = 43, P < 0.001), without affecting the ouabain-sensitive Na(+)/K(+) pump current. The INa response to E2 was inhibited by PKCδ activity antagonism with rottlerin (5 μmol/L), inhibition of matrix metalloproteinases activity with GM6001 (1 μmol/L), inhibition of EGFR activity with AG1478 (10 μmol/L), inhibition of PLC activity with U-73122 (10 μmol/L), and inhibition of estrogen receptors with the general ER antagonist ICI-182780 (100 nmol/L). The estrogen activation of INa could be mimicked by the ERα agonist PPT (1 nmol/L). The nuclear excluded estrogen dendrimer conjugate (EDC) induced similar stimulatory effects on INa comparable to free E2. The end target for E2 stimulation of PKCδ was shown to be an increased abundance of the γ-ENaC subunit in the apical plasma membrane of CCD cells. We have demonstrated a novel rapid "nongenomic" function of estrogen to stimulate ENaC via ERα-EGFR transactivation in kidney CCD cells. We propose that the salt-retaining effect of estrogen in the kidney together with its antisecretory action in the intestine are the molecular mechanisms causing the expanded ECF volume in high-estrogen states.


A proposed integrated approach for the preclinical evaluation of phage therapy in Pseudomonas infections.

  • Katarzyna Danis-Wlodarczyk‎ et al.
  • Scientific reports‎
  • 2016‎

Bacteriophage therapy is currently resurging as a potential complement/alternative to antibiotic treatment. However, preclinical evaluation lacks streamlined approaches. We here focus on preclinical approaches which have been implemented to assess bacteriophage efficacy against Pseudomonas biofilms and infections. Laser interferometry and profilometry were applied to measure biofilm matrix permeability and surface geometry changes, respectively. These biophysical approaches were combined with an advanced Airway Surface Liquid infection model, which mimics in vitro the normal and CF lung environments, and an in vivo Galleria larvae model. These assays have been implemented to analyze KTN4 (279,593 bp dsDNA genome), a type-IV pili dependent, giant phage resembling phiKZ. Upon contact, KTN4 immediately disrupts the P. aeruginosa PAO1 biofilm and reduces pyocyanin and siderophore production. The gentamicin exclusion assay on NuLi-1 and CuFi-1 cell lines revealed the decrease of extracellular bacterial load between 4 and 7 logs and successfully prevents wild-type Pseudomonas internalization into CF epithelial cells. These properties and the significant rescue of Galleria larvae indicate that giant KTN4 phage is a suitable candidate for in vivo phage therapy evaluation for lung infection applications.


The effect of high [K(+)]o on spontaneous Ca(2+) waves in freshly isolated interstitial cells of Cajal from the rabbit urethra.

  • Bernard T Drumm‎ et al.
  • Physiological reports‎
  • 2014‎

Interstitial cells of Cajal (ICC) act as putative pacemaker cells in the rabbit urethra. Pacemaker activity in ICC results from spontaneous global Ca(2+) waves that can be increased in frequency by raising external [K(+)]. The purpose of this study was to elucidate the mechanism of this response. Intracellular [Ca(2+)] was measured in fluo-4-loaded smooth muscle cells (SMCs) and ICC using a Nipkow spinning disk confocal microscope. Increasing [K(+)]o to 60 mmol/L caused an increase in [Ca(2+)]i accompanied by contraction in SMCs. Raising [K(+)]o did not cause contraction in ICC, but the frequency of firing of spontaneous calcium waves increased. Reducing [Ca(2+)]o to 0 mmol/L abolished the response in both cell types. Nifedipine of 1 μmol/L blocked the response of SMC to high [K(+)]o, but did not affect the increase in firing in ICC. This latter effect was blocked by 30 μmol/L NiCl2 but not by the T-type Ca(2+) channel blocker mibefradil (300 nmol/L). However, inhibition of Ca(2+) influx via reverse-mode sodium/calcium exchange (NCX) using either 1 μmol/L SEA0400 or 5 μmol/L KB-R7943 did block the effect of high [K(+)]o on ICC. These data suggest that high K(+) solution increases the frequency of calcium waves in ICC by increasing Ca(2+) influx through reverse-mode NCX.


Sexual dimorphism and oestrogen regulation of KCNE3 expression modulates the functional properties of KCNQ1 K⁺ channels.

  • Rodrigo Alzamora‎ et al.
  • The Journal of physiology‎
  • 2011‎

The KCNQ1 potassium channel associates with various KCNE ancillary subunits that drastically affect channel gating and pharmacology. Co-assembly with KCNE3 produces a current with nearly instantaneous activation, some time-dependent activation at very positive potentials, a linear current-voltage relationship and a 10-fold higher sensitivity to chromanol 293B. KCNQ1:KCNE3 channels are expressed in colonic crypts and mediate basolateral K(+) recycling required for Cl(-) secretion. We have previously reported the female-specific anti-secretory effects of oestrogen via KCNQ1:KCNE3 channel inhibition in colonic crypts. This study was designed to determine whether sex and oestrogen regulate the expression and function of KCNQ1 and KCNE3 in rat distal colon. Colonic crypts were isolated from Sprague-Dawley rats and used for whole-cell patch-clamp and to extract total RNA and protein. Sheets of epithelium were used for short-circuit current recordings. KCNE1 and KCNE3 mRNA and protein abundance were significantly higher in male than female crypts. No expression of KCNE2 was found and no difference was observed in KCNQ1 expression between male and female (at oestrus) colonic crypts. Male crypts showed a 2.2-fold higher level of association of KCNQ1 and KCNE3 compared to female cells. In female colonic crypts, KCNQ1 and KCNE3 protein expression fluctuated throughout the oestrous cycle and 17β-oestradiol (E2 10 nM) produced a rapid (<15 min) dissociation of KCNQ1 and KCNE3 in female crypts only. Whole-cell K(+) currents showed a linear current-voltage relationship in male crypts, while K(+) currents in colonic crypts isolated from females displayed voltage-dependent outward rectification. Currents in isolated male crypts and epithelial sheets were 10-fold more sensitive to specific KCNQ1 inhibitors, such as chromanol 293B and HMR-1556, than in female. The effect of E2 on K(+) currents mediated by KCNQ1 with or without different β-subunits was assayed from current-voltage relations elicited in CHO cells transfected with KCNQ1 and KCNE3 or KCNE1 cDNA. E2 (100 nM) reduced the currents mediated by the KCNQ1:KCNE3 potassium channel and had no effect on currents via KCNQ1:KCNE1 or KCNQ1 alone. Currents mediated by the complex formed by KCNQ1 and the mutant KCNE3-S82A β-subunit (mutation of the site for PKCδ-promoted phosphorylation and modulation of the activity of KCNE3) showed rapid run-down and insensitivity to E2. Together, these data suggest that oestrogen regulates the expression of the KCNE1 and KCNE3 and with it the gating and pharmacological properties of the K(+) conductance required for Cl(-) secretion. The decreased association of the KCNQ1:KCNE3 channel complex promoted by oestrogen exposure underlies the molecular mechanism for the sexual dimorphism and oestrous cycle dependence of the anti-secretory actions of oestrogen in the intestine.


Eosinophil peroxidase activates cells by HER2 receptor engagement and β1-integrin clustering with downstream MAPK cell signaling.

  • Kerrie Hennigan‎ et al.
  • Clinical immunology (Orlando, Fla.)‎
  • 2016‎

Eosinophils account for 1-3% of peripheral blood leukocytes and accumulate at sites of allergic inflammation, where they play a pathogenic role. Studies have shown that treatment with mepolizumab (an anti-IL-5 monoclonal antibody) is beneficial to patients with severe eosinophilic asthma, however, the mechanism of precisely how eosinophils mediate these pathogenic effects is uncertain. Eosinophils contain several cationic granule proteins, including Eosinophil Peroxidase (EPO). The main significance of this work is the discovery of EPO as a novel ligand for the HER2 receptor. Following HER2 activation, EPO induces activation of FAK and subsequent activation of β1-integrin, via inside-out signaling. This complex results in downstream activation of ERK1/2 and a sustained up regulation of both MUC4 and the HER2 receptor. These data identify a receptor for one of the eosinophil granule proteins and demonstrate a potential explanation of the proliferative effects of eosinophils.


Protein kinase D2 regulates epithelial sodium channel activity and aldosterone non-genomic responses in renal cortical collecting duct cells.

  • Warren Thomas‎ et al.
  • Steroids‎
  • 2020‎

Protein kinase D2 (PKD2) is a serine/threonine protein kinase which plays an important role in vesicle fission at the trans-Golgi network (TGN) to coordinate subcellular trafficking with gene expression. We found that in the rat kidney, PKD2 is specifically expressed in collecting duct principal cells predominantly at the apical membrane and with lower basal expression in cytosolic compartments. When rats were maintained on a Na+ depleted diet (<0.87 mmol Na+/kg) to increase plasma aldosterone levels, PKD2 became internalized to a cytoplasmic compartment. Treatment of murine M1 cortical collecting duct (M1-CCD) cells with aldosterone (10 nM) promoted PKD2 co-localization with the trans-Golgi network within 30 min. PKD2 underwent autophosphorylation at Ser876 within 10 min of aldosterone treatment and remained phosphorylated (active) for at least 24 h. A stable PKD2 shRNA knock-down (PKD2 KD) M1-CCD cell line was developed to study the role of PKD2 in epithelial Na+ channel (ENaC) trafficking and transepithelial Na+ transport (SCC) in epithelial monolayers grown in Ussing chambers. The PKD2 KD cells developed transepithelial resistance with kinetics equivalent to wild-type cells, however the transepithelial voltage and Na+ current were significantly elevated in PKD2 knock-down CCD epithelia. The higher basal SCC was due to increased ENaC activity. Aldosterone treatment for 24 h resulted in a decline in ENaC activity in the PKD2 KD cells as opposed to the increase observed in the wild-type cells. The paradoxical inhibition of SCC by aldosterone in PKD2 KD epithelium was attributed to a reduction in ENaC current and lower membrane abundance of ENaC, demonstrating that PKD2 plays a critical tonic role in ENaC trafficking and channel subunit stability. The rapid activation of PKD2 by aldosterone is synergistic with the transcriptional activity of MR and contributes to increased ENaC activity.


Dataset of KCNQ1, KCNN4, KATP channel expression and dexamethasone modulation of protein kinase signaling in airway epithelial cells.

  • Darina Hynes‎ et al.
  • Data in brief‎
  • 2019‎

Dexamethasone produces anti-secretory responses in airway epithelium through the inhibition of basolateral membrane K+ channels [1-3]. We have used the human bronchial epithelial cell line 16HBE14o- to investigate the effects of dexamethasone on the expression of K+ channels and regulatory protein kinases. The data demonstrate the expression of three distinct K+ channel types - KCNQ1:KCNE3, KCNN4 and KATP which are differentially regulated by protein kinase A and protein kinase C. The data also provide evidence for rapid non-genomic actions of dexamethasone on PKC and PKA phosphorylation and their association with the various K+ channel sub-types. Biotinylation experiments provide data on the effects of dexamethasone on membrane expression of the K+ channels. Antibody co-immunoprecipitation, rtPCR and western blotting data are given for the non-genomic dexamethasone transcription-cell signaling pathway involving Gi-protein coupled receptor, PKC, adenylyl cyclase Type IV, cAMP, PKA and ERK1/2 activation.


Ursodeoxycholic acid inhibits ENaC and Na/K pump activity to restore airway surface liquid height in cystic fibrosis bronchial epithelial cells.

  • Magdalena S Mroz‎ et al.
  • Steroids‎
  • 2019‎

Cystic fibrosis (CF) is a disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) that in the airways result in reduced Cl- secretion and increased Na+ absorption, airway surface liquid (ASL) dehydration, decreased mucociliary clearance, infection and inflammation leading to lung injury. Cystic fibrosis patients often present with bile acids in the lower airways, however the effects of bile acids on ASL and ion transport in CF airways are not known. Secondary bile acids, such as ursodeoxycholic acid (UDCA), have been shown to modulate immune responses and epithelial ion transport. Here we investigated the effects of UDCA in normal and CF airway epithelial cell models. NuLi-1 (normal genotype) and CuFi-1 (CF genotype, Δ508/Δ508) primary immortalized airway epithelial cells were grown under an air-liquid interface. Electrogenic transepithelial ion transport was measured by short-circuit current (Isc) across cell monolayers mounted in Ussing chambers. We observed that UDCA (500 μM, 60 min, bilateral) decreased the basal Isc and ENaC currents in both NuLi-1 and CuFi-1 cells. UDCA inhibited the amiloride-sensitive ENaC current by 44% in NulI-1 monolayers and by 30% in CuFi-1 cells. Interestingly, UDCA also inhibited currents through the basolateral Na/K pump in both Nuli-1 and CuFi-1 monolayers without alterting the expression of ENaC or Na+/K+-ATPase proteins. The airway surface liquid height is regulated by transpeithelial Na+ absorption (ENaC) and Cl- secretion (CFTR) in normal airway but mainly by ENaC activity in CF epithelia when Cl- secretion is compromised by CFTR mutations. UDCA increased ASL height by 50% in Nuli-1 and by 40% in CUFI-1 monolayers. In conclusion, we demonstrate a previously unknown effect of UDCA to inhibit ENaC activity and increase ASL height in normal and CF human airway epithelial cells suggesting a therapeutic potential for UDCA in CF lung disease.


Rapid effects of 17beta-estradiol on TRPV5 epithelial Ca2+ channels in rat renal cells.

  • Mustapha Irnaten‎ et al.
  • Steroids‎
  • 2009‎

The renal distal tubules and collecting ducts play a key role in the control of electrolyte and fluid homeostasis. The discovery of highly calcium selective channels, Transient Receptor Potential Vanilloid 5 (TRPV5) of the TRP superfamily, has clarified the nature of the calcium entry channels. It has been proposed that this channel mediates the critical Ca(2+) entry step in transcellular Ca(2+) re-absorption in the kidney. The regulation of transmembrane Ca(2+) flux through TRPV5 is of particular importance for whole body calcium homeostasis.In this study, we provide evidence that the TRPV5 channel is present in rat cortical collecting duct (RCCD(2)) cells at mRNA and protein levels. We demonstrate that 17beta-estradiol (E(2)) is involved in the regulation of Ca(2+) influx in these cells via the epithelial Ca(2+) channels TRPV5. By combining whole-cell patch-clamp and Ca(2+)-imaging techniques, we have characterized the electrophysiological properties of the TRPV5 channel and showed that treatment with 20-50nM E(2) rapidly (<5min) induced a transient increase in inward whole-cell currents and intracellular Ca(2+) via TRPV5 channels. This rise was significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV5.These data demonstrate for the first time, a novel rapid modulation of endogenously expressed TRPV5 channels by E(2) in kidney cells. Furthermore, the results suggest calcitropic effects of E(2). The results are discussed in relation to present concepts of non-genomic actions of E(2) in Ca(2+) homeostasis.


Lipoxin A4 stimulates calcium-activated chloride currents and increases airway surface liquid height in normal and cystic fibrosis airway epithelia.

  • Valia Verrière‎ et al.
  • PloS one‎
  • 2012‎

Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl(-) secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA(4) is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA(4) are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA(4) produced a rapid and transient increase in intracellular Ca(2+). We have investigated, the effect of LXA(4) on Cl(-) secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA(4) stimulated a rapid intracellular Ca(2+) increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA(4) stimulated whole-cell Cl(-) currents which were inhibited by NPPB (calcium-activated Cl(-) channel inhibitor), BAPTA-AM (chelator of intracellular Ca(2+)) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA(4) increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA(4) effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl(-) secretion. The LXA(4) stimulation of intracellular Ca(2+), whole-cell Cl(-) currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA(4) in the stimulation of intracellular Ca(2+) signalling leading to Ca(2+)-activated Cl(-) secretion and enhanced ASL height in non-CF and CF bronchial epithelia.


Rapid effects of 17beta-estradiol on epithelial TRPV6 Ca2+ channel in human T84 colonic cells.

  • Mustapha Irnaten‎ et al.
  • Cell calcium‎
  • 2008‎

The control of calcium homeostasis is essential for cell survival and is of crucial importance for several physiological functions. The discovery of the epithelial calcium channel Transient Receptor Potential Vaniloid (TRPV6) in intestine has uncovered important Ca(2+) absorptive pathways involved in the regulation of whole body Ca(2+) homeostasis. The role of steroid hormone 17beta-estradiol (E(2)), in [Ca(2+)](i) regulation involving TRPV6 has been only limited at the protein expression levels in over-expressing heterologous systems. In the present study, using a combination of calcium-imaging, whole-cell patch-clamp techniques and siRNA technology to specifically knockdown TRPV6 protein expression, we were able to (i) show that TRPV6 is natively, rather than exogenously, expressed at mRNA and protein levels in human T84 colonic cells, (ii) characterize functional TRPV6 channels and (iii) demonstrate, for the first time, the rapid effects of E(2) in [Ca(2+)](i) regulation involving directly TRPV6 channels in T84 cells. Treatment with E(2) rapidly (<5 min) enhanced [Ca(2+)](i) and this increase was partially but significantly prevented when cells were pre-treated with ruthenium red and completely abolished in cells treated with siRNA specifically targeting TRPV6 protein expression. These results indicate that when cells are stimulated by E(2), Ca(2+) enters the cell through TRPV6 channels. TRPV6 channels in T84 cells contribute to the Ca(2+) entry/signalling pathway that is sensitive to 17beta-estradiol.


Pseudomonas aeruginosa PA5oct Jumbo Phage Impacts Planktonic and Biofilm Population and Reduces Its Host Virulence.

  • Tomasz Olszak‎ et al.
  • Viruses‎
  • 2019‎

The emergence of phage-resistant mutants is a key aspect of lytic phages-bacteria interaction and the main driver for the co-evolution between both organisms. Here, we analyze the impact of PA5oct jumbo phage treatment on planktonic/cell line associated and sessile P. aeruginosa population. Besides its broad-spectrum activity and efficient bacteria reduction in both airway surface liquid (ASL) model, and biofilm matrix degradation, PA5oct appears to persist in most of phage-resistant clones. Indeed, a high percentage of resistance (20/30 clones) to PA5oct is accompanied by the presence of phage DNA within bacterial culture. Moreover, the maintenance of this phage in the bacterial population correlates with reduced P. aeruginosa virulence, coupled with a sensitization to innate immune mechanisms, and a significantly reduced growth rate. We observed rather unusual consequences of PA5oct infection causing an increased inflammatory response of monocytes to P. aeruginosa. This phenomenon, combined with the loss or modification of the phage receptor, makes most of the phage-resistant clones significantly less pathogenic in in vivo model. These findings provide new insights into the general knowledge of giant phages biology and the impact of their application in phage therapy.


GPER mediates differential effects of estrogen on colon cancer cell proliferation and migration under normoxic and hypoxic conditions.

  • Viviana Bustos‎ et al.
  • Oncotarget‎
  • 2017‎

The estrogen receptor ERβ is the predominant ER subtype expressed in normal well-differentiated colonic epithelium. However, ERβ expression is lost under the hypoxic microenvironment as colorectal cancer (CRC) malignancy progresses. This raises questions about the role of signalling through other estrogen receptors such as ERα or G-protein coupled estrogen receptor (GPER, GPR30) by the estrogen 17β-estradiol (E2) under hypoxic conditions after ERβ is lost in CRC progression. We tested the hypothesis that E2 or hypoxia can act via GPER to contribute to the altered phenotype of CRC cells. GPER expression was found to be up-regulated by hypoxia and E2 in a panel of CRC cell lines. The E2-modulated gene, Ataxia telangiectasia mutated (ATM), was repressed in hypoxia via GPER signalling. E2 treatment enhanced hypoxia-induced expression of HIF1-α and VEGFA, but repressed HIF1-α and VEGFA expression under normoxic conditions. The expression and repression of VEGFA by E2 were mediated by a GPER-dependent mechanism. E2 treatment potentiated hypoxia-induced CRC cell migration and proliferation, whereas in normoxia, cell migration and proliferation were suppressed by E2 treatment. The effects of E2 on these cellular responses in normoxia and hypoxia were mediated by GPER. In a cohort of 566 CRC patient tumor samples, GPER expression significantly associated with poor survival in CRC Stages 3-4 females but not in the stage-matched male population. Our findings support a potentially pro-tumorigenic role for E2 in ERβ-negative CRC under hypoxic conditions transduced via GPER and suggest a novel route of therapeutic intervention through GPER antagonism.


Aldosterone-induced ENaC and basal Na+/K+-ATPase trafficking via protein kinase D1-phosphatidylinositol 4-kinaseIIIβ trans Golgi signalling in M1 cortical collecting duct cells.

  • Ruth Dooley‎ et al.
  • Molecular and cellular endocrinology‎
  • 2013‎

Aldosterone regulates Na(+) transport in the distal nephron through multiple mechanisms that include the transcriptional control of epithelial sodium channel (ENaC) and Na(+)/K(+)-ATPase subunits. Aldosterone also induces the rapid phosphorylation of Protein Kinase D1 (PKD1). PKD isoforms regulate protein trafficking, by the control of vesicle fission from the trans Golgi network (TGN) through activation of phosphatidylinositol 4-kinaseIIIβ (PI4KIIIβ). We report rapid ENaCγ translocation to the plasma membrane after 30 min aldosterone treatment in polarized M1 cortical collecting duct cells, which was significantly impaired in PKD1 shRNA-mediated knockdown cells. In PKD1-deficient cells, the ouabain-sensitive current was significantly reduced and Na(+)/K(+)-ATPase α and β subunits showed aberrant localization. PKD1 and PI4KIIIβ localize to the TGN, and aldosterone induced an interaction between PKD1 and PI4KIIIβ following aldosterone treatment. This study reveals a novel mechanism for rapid regulation of ENaC and the Na(+)/K(+)-ATPase, via directed trafficking through PKD1-PI4KIIIβ signalling at the level of the TGN.


Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation.

  • Victoria McEneaney‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2010‎

Aldosterone elicits transcriptional responses in target tissues and also rapidly stimulates the activation of protein kinase signalling cascades independently of de novo protein synthesis. Here we investigated aldosterone-induced cell proliferation and extra-cellular regulated kinase 1 and 2 (ERK1/2) mitogen activated protein (MAP) kinase signalling in the M1 cortical collecting duct cell line (M1-CCD). Aldosterone promoted the proliferative growth of M1-CCD cells, an effect that was protein kinase D1 (PKD1), PKCdelta and ERK1/2-dependent. Aldosterone induced the rapid activation of ERK1/2 with peaks of activation at 2 and 10 to 30 min after hormone treatment followed by sustained activation lasting beyond 120 min. M1-CCD cells suppressed in PKD1 expression exhibited only the early, transient peaks in ERK1/2 activation without the sustained phase. Aldosterone stimulated the physical association of PKD1 with ERK1/2 within 2 min of treatment. The mineralocorticoid receptor (MR) antagonist RU28318 inhibited the early and late phases of aldosterone-induced ERK1/2 activation, and also aldosterone-induced proliferative cell growth. Aldosterone induced the sub-cellular redistribution of ERK1/2 to the nuclei at 2 min and to cytoplasmic sites, proximal to the nuclei after 30 min. This sub-cellular distribution of ERK1/2 was inhibited in cells suppressed in the expression of PKD1.


Aldosterone rapidly activates protein kinase D via a mineralocorticoid receptor/EGFR trans-activation pathway in the M1 kidney CCD cell line.

  • Victoria McEneaney‎ et al.
  • The Journal of steroid biochemistry and molecular biology‎
  • 2007‎

Aldosterone elicits physiological responses through the modulation of gene expression and by stimulating signaling processes. Here we investigated the activation pathway of protein kinase D1 (PKD1) by aldosterone in the murine M1 renal cortical collecting duct cell line. Aldosterone stimulated a rapid increase in PKD1 activity peaking at 2-5 min and at 30 min after treatment that was insensitive to inhibitors of transcription or translation. PKD1 was not activated by aldosterone in MR null NIH-3T3 fibroblasts or M1-CCD cells propagated without dexamethasone, which did not express MR. PKD1 activation was sensitive to the MR antagonists spironolactone and RU28318 but not to the glucocorticoid receptor antagonist RU486. Aldosterone activation of PKD1 was inhibited by the epidermal growth factor (EGFR) antagonist tyrphostin AG1478 and by the c-Src inhibitor PP2. Western blotting revealed EGFR phosphorylation following aldosterone treatment at the c-Src tyrosine kinase-specific residue Tyr845. The activation of c-Src was dependent on its interaction with HSP84, since HSP84 antagonist 17-AAG inhibited both the phosphorylation of EGFR in response to aldosterone by c-Src and also the subsequent activation of PKD1.


Physiological levels of lipoxin A4 inhibit ENaC and restore airway surface liquid height in cystic fibrosis bronchial epithelium.

  • Mazen Al-Alawi‎ et al.
  • Physiological reports‎
  • 2014‎

In cystic fibrosis (CF), the airway surface liquid (ASL) is depleted. We previously demonstrated that lipoxin A4 (LXA4) can modulate ASL height (ASLh) through actions on Cl(-) transport. Here, we report novel effects of lipoxin on the epithelial Na(+) channel ENaC in this response. ASL dynamics and ion transport were studied using live-cell confocal microscopy and short-circuit current measurements in CF (CuFi-1) and non-CF (NuLi-1) cell cultures. Low physiological concentrations of LXA4 in the picomolar range produced an increase in ASLh which was dependent on inhibition of an amiloride-sensitive Na(+) current and stimulation of a bumetanide-sensitive Cl(-) current. These ion transport and ASLh responses to LXA4 were blocked by Boc-2 an inhibitor of the specific LXA4 receptor ALX/FPR2. LXA4 affected the subcellular localization of its receptor and enhanced the localization of ALX/FPR2 at the apical membrane of CF cells. Our results provide evidence for a novel effect of low physiological concentrations of LXA4 to inhibit airway epithelial Na(+) absorption that results in an ASL height increase in CF airway epithelia.


GPER Agonist G1 Prevents Wnt-Induced JUN Upregulation in HT29 Colorectal Cancer Cells.

  • Maria Abancens‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Women consistently show lower incidence and mortality rates for colorectal cancer (CRC) compared to men. Epidemiological evidence supports a pivotal role for estrogen in protecting women against CRC. Estrogen protective effects in CRC have been mainly attributed to the estrogen receptor beta (ERβ) however its expression is lost during CRC progression. The role of the G-protein coupled membrane estrogen receptor (GPER/GPER1/GPR30), which remains expressed after ERβ loss in CRC, is currently under debate. We hypothesise that estrogen can protect against CRC progression via GPER by modulating the Wnt/β-catenin proliferative pathway which is commonly hyperactivated in CRC. We sought evidence of sexual dimorphism within the Wnt/β-catenin pathway by conducting Kaplan-Meier analyses based on gene expression of the Wnt receptor FZD1 (Frizzled 1) in multiple public domain CRC patient data sets. High expression of FZD1 was associated with poor relapse-free survival rates in the male but not the female population. In female-derived HT29 CRC cell lines, we show that β-catenin nuclear translocation was not affected by treatment with the GPER agonist G1. However, G1 prevented the Wnt pathway-induced upregulation of the JUN oncogene. These novel findings indicate a mechanistic role for GPER in protecting against CRC progression by selectively reducing the tumorigenic effects of hyperactive Wnt/β-catenin signalling pathways in CRC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: