Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 20 papers

Absolute quantification of cohesin, CTCF and their regulators in human cells.

  • Johann Holzmann‎ et al.
  • eLife‎
  • 2019‎

The organisation of mammalian genomes into loops and topologically associating domains (TADs) contributes to chromatin structure, gene expression and recombination. TADs and many loops are formed by cohesin and positioned by CTCF. In proliferating cells, cohesin also mediates sister chromatid cohesion, which is essential for chromosome segregation. Current models of chromatin folding and cohesion are based on assumptions of how many cohesin and CTCF molecules organise the genome. Here we have measured absolute copy numbers and dynamics of cohesin, CTCF, NIPBL, WAPL and sororin by mass spectrometry, fluorescence-correlation spectroscopy and fluorescence recovery after photobleaching in HeLa cells. In G1-phase, there are ~250,000 nuclear cohesin complexes, of which ~ 160,000 are chromatin-bound. Comparison with chromatin immunoprecipitation-sequencing data implies that some genomic cohesin and CTCF enrichment sites are unoccupied in single cells at any one time. We discuss the implications of these findings for how cohesin can contribute to genome organisation and cohesion.


Understanding the association between sleep, shift work and COVID-19 vaccine immune response efficacy: Protocol of the S-CORE study.

  • Heidi M Lammers-van der Holst‎ et al.
  • Journal of sleep research‎
  • 2022‎

This protocol describes an innovative study to investigate the relationship between sleep, shift work and the immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2; coronavirus disease 2019 [COVID-19]) vaccination. As the COVID-19 pandemic is a global crisis with devastating health, social and economic impacts, there is a pressing need for effective vaccination programmes. Previous influenza and hepatitis vaccination studies suggest that lack of sleep can negatively alter immune responsiveness, while circadian misalignment most likely may also play an important role in the immune response to vaccination. Our present study will be the first to address this question in actual shift workers and in relation to COVID-19 vaccination. We hypothesise that the occurrence of recent night shifts and diminished sleep will negatively alter the immune response to vaccination in shift workers compared to dayworkers. We aim to recruit 50 shift workers and 50 dayworkers. Participants will receive an mRNA-based vaccination, through the Dutch vaccination programme. To assess immune responsiveness, blood will be drawn at baseline (before first vaccination), 10 days after first vaccination, the day prior to the second vaccination; and 28 days, 6 and 12 months after the second vaccination. Actigraphy and daily sleep e-diaries will be implemented for 7 days around each vaccination to assess sleep. The Pittsburgh Sleep Quality Index will be used to monitor sleep in the long term. Optimising the efficacy of the COVID-19 vaccines is of outmost importance and results of this study could provide insights to develop sleep and circadian-based interventions to enhance vaccination immunity, and thereby improve global health.


Glutaminyl cyclase contributes to the formation of focal and diffuse pyroglutamate (pGlu)-Aβ deposits in hippocampus via distinct cellular mechanisms.

  • Maike Hartlage-Rübsamen‎ et al.
  • Acta neuropathologica‎
  • 2011‎

In the hippocampal formation of Alzheimer's disease (AD) patients, both focal and diffuse deposits of Aβ peptides appear in a subregion- and layer-specific manner. Recently, pyroglutamate (pGlu or pE)-modified Aβ peptides were identified as a highly pathogenic and seeding Aβ peptide species. Since the pE modification is catalyzed by glutaminyl cyclase (QC) this enzyme emerged as a novel pharmacological target for AD therapy. Here, we reveal the role of QC in the formation of different types of hippocampal pE-Aβ aggregates. First, we demonstrate that both, focal and diffuse pE-Aβ deposits are present in defined layers of the AD hippocampus. While the focal type of pE-Aβ aggregates was found to be associated with the somata of QC-expressing interneurons, the diffuse type was not. To address this discrepancy, the hippocampus of amyloid precursor protein transgenic mice was analysed. Similar to observations made in AD, focal (i.e. core-containing) pE-Aβ deposits originating from QC-positive neurons and diffuse pE-Aβ deposits not associated with QC were detected in Tg2576 mouse hippocampus. The hippocampal layers harbouring diffuse pE-Aβ deposits receive multiple afferents from QC-rich neuronal populations of the entorhinal cortex and locus coeruleus. This might point towards a mechanism in which pE-Aβ and/or QC are being released from projection neurons at hippocampal synapses. Indeed, there are a number of reports demonstrating the reduction of diffuse, but not of focal, Aβ deposits in hippocampus after deafferentation experiments. Moreover, we demonstrate in neurons by live cell imaging and by enzymatic activity assays that QC is secreted in a constitutive and regulated manner. Thus, it is concluded that hippocampal pE-Aβ plaques may develop through at least two different mechanisms: intracellularly at sites of somatic QC activity as well as extracellularly through seeding at terminal fields of QC expressing projection neurons.


Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication.

  • Daniel Gerlich‎ et al.
  • Current biology : CB‎
  • 2006‎

Cohesin is a multisubunit protein complex that links sister chromatids from replication until segregation. The lack of obvious cohesin-targeting-specific sequences on DNA, as well as cohesin's molecular arrangement as a large ring, has led to the working hypothesis that cohesin acts as a direct topological linker. To preserve the identity of sister chromatids, such a linkage would need to stably persist throughout the entire S and G2 phases of the cell cycle. Unexpectedly, cohesin binds chromatin already in telophase, and a large fraction dissociates from chromosomes during prophase in a phosphorylation-dependent manner, whereas initiation of anaphase requires proteolytic cleavage of only a small fraction of cohesin. These observations raised the question of how and when cohesin interacts with chromatin during the cell cycle. Here, we report a cell-cycle dependence in the stability of cohesin binding to chromatin. Using photobleaching and quantitative live-cell imaging, we identified several cohesin pools with different chromatin binding stabilities. Although all chromatin bound cohesin dissociated after a mean residence time of less than 25 min before replication, about one-third of cohesin was bound much more stably after S phase and persisted until metaphase, consistent with long-lived links mediating cohesion between sister chromatids.


Live-Cell Fluorescence Lifetime Multiplexing Using Synthetic Fluorescent Probes.

  • Michelle S Frei‎ et al.
  • ACS chemical biology‎
  • 2022‎

Fluorescence lifetime multiplexing requires fluorescent probes with distinct fluorescence lifetimes but similar spectral properties. Even though synthetic probes for many cellular targets are available for multicolor live-cell fluorescence microscopy, few of them have been characterized for their use in fluorescence lifetime multiplexing. Here, we demonstrate that, from a panel of 18 synthetic probes, eight pairwise combinations are suitable for fluorescence lifetime multiplexing in living mammalian cell lines. Moreover, combining multiple pairs in different spectral channels enables us to image four and with the help of self-labeling protein tags up to eight different biological targets, effectively doubling the number of observable targets. The combination of synthetic probes with fluorescence lifetime multiplexing is thus a powerful approach for live-cell imaging.


Engineered HaloTag variants for fluorescence lifetime multiplexing.

  • Michelle S Frei‎ et al.
  • Nature methods‎
  • 2022‎

Self-labeling protein tags such as HaloTag are powerful tools that can label fusion proteins with synthetic fluorophores for use in fluorescence microscopy. Here we introduce HaloTag variants with either increased or decreased brightness and fluorescence lifetime compared with HaloTag7 when labeled with rhodamines. Combining these HaloTag variants enabled live-cell fluorescence lifetime multiplexing of three cellular targets in one spectral channel using a single fluorophore and the generation of a fluorescence lifetime-based biosensor. Additionally, the brightest HaloTag variant showed up to 40% higher brightness in live-cell imaging applications.


SNW1 enables sister chromatid cohesion by mediating the splicing of sororin and APC2 pre-mRNAs.

  • Petra van der Lelij‎ et al.
  • The EMBO journal‎
  • 2014‎

Although splicing is essential for the expression of most eukaryotic genes, inactivation of splicing factors causes specific defects in mitosis. The molecular cause of this defect is unknown. Here, we show that the spliceosome subunits SNW1 and PRPF8 are essential for sister chromatid cohesion in human cells. A transcriptome-wide analysis revealed that SNW1 or PRPF8 depletion affects the splicing of specific introns in a subset of pre-mRNAs, including pre-mRNAs encoding the cohesion protein sororin and the APC/C subunit APC2. SNW1 depletion causes cohesion defects predominantly by reducing sororin levels, which causes destabilisation of cohesin on DNA. SNW1 depletion also reduces APC/C activity and contributes to cohesion defects indirectly by delaying mitosis and causing "cohesion fatigue". Simultaneous expression of sororin and APC2 from intron-less cDNAs restores cohesion in SNW1-depleted cells. These results indicate that the spliceosome is required for mitosis because it enables expression of genes essential for cohesion. Our transcriptome-wide identification of retained introns in SNW1- and PRPF8-depleted cells may help to understand the aetiology of diseases associated with splicing defects, such as retinosa pigmentosum and cancer.


Comparative assessment of fluorescent transgene methods for quantitative imaging in human cells.

  • Robert Mahen‎ et al.
  • Molecular biology of the cell‎
  • 2014‎

Fluorescence tagging of proteins is a widely used tool to study protein function and dynamics in live cells. However, the extent to which different mammalian transgene methods faithfully report on the properties of endogenous proteins has not been studied comparatively. Here we use quantitative live-cell imaging and single-molecule spectroscopy to analyze how different transgene systems affect imaging of the functional properties of the mitotic kinase Aurora B. We show that the transgene method fundamentally influences level and variability of expression and can severely compromise the ability to report on endogenous binding and localization parameters, providing a guide for quantitative imaging studies in mammalian cells.


Nuclear pore assembly proceeds by an inside-out extrusion of the nuclear envelope.

  • Shotaro Otsuka‎ et al.
  • eLife‎
  • 2016‎

The nuclear pore complex (NPC) mediates nucleocytoplasmic transport through the nuclear envelope. How the NPC assembles into this double membrane boundary has remained enigmatic. Here, we captured temporally staged assembly intermediates by correlating live cell imaging with high-resolution electron tomography and super-resolution microscopy. Intermediates were dome-shaped evaginations of the inner nuclear membrane (INM), that grew in diameter and depth until they fused with the flat outer nuclear membrane. Live and super-resolved fluorescence microscopy revealed the molecular maturation of the intermediates, which initially contained the nuclear and cytoplasmic ring component Nup107, and only later the cytoplasmic filament component Nup358. EM particle averaging showed that the evagination base was surrounded by an 8-fold rotationally symmetric ring structure from the beginning and that a growing mushroom-shaped density was continuously associated with the deforming membrane. Quantitative structural analysis revealed that interphase NPC assembly proceeds by an asymmetric inside-out extrusion of the INM.


Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.

  • Gordana Wutz‎ et al.
  • The EMBO journal‎
  • 2017‎

Mammalian genomes are spatially organized into compartments, topologically associating domains (TADs), and loops to facilitate gene regulation and other chromosomal functions. How compartments, TADs, and loops are generated is unknown. It has been proposed that cohesin forms TADs and loops by extruding chromatin loops until it encounters CTCF, but direct evidence for this hypothesis is missing. Here, we show that cohesin suppresses compartments but is required for TADs and loops, that CTCF defines their boundaries, and that the cohesin unloading factor WAPL and its PDS5 binding partners control the length of loops. In the absence of WAPL and PDS5 proteins, cohesin forms extended loops, presumably by passing CTCF sites, accumulates in axial chromosomal positions (vermicelli), and condenses chromosomes. Unexpectedly, PDS5 proteins are also required for boundary function. These results show that cohesin has an essential genome-wide function in mediating long-range chromatin interactions and support the hypothesis that cohesin creates these by loop extrusion, until it is delayed by CTCF in a manner dependent on PDS5 proteins, or until it is released from DNA by WAPL.


A general method for the development of multicolor biosensors with large dynamic ranges.

  • Lars Hellweg‎ et al.
  • Nature chemical biology‎
  • 2023‎

Fluorescent biosensors enable the study of cell physiology with spatiotemporal resolution; yet, most biosensors suffer from relatively low dynamic ranges. Here, we introduce a family of designed Förster resonance energy transfer (FRET) pairs with near-quantitative FRET efficiencies based on the reversible interaction of fluorescent proteins with a fluorescently labeled HaloTag. These FRET pairs enabled the straightforward design of biosensors for calcium, ATP and NAD+ with unprecedented dynamic ranges. The color of each of these biosensors can be readily tuned by changing either the fluorescent protein or the synthetic fluorophore, which enables simultaneous monitoring of free NAD+ in different subcellular compartments following genotoxic stress. Minimal modifications of these biosensors furthermore allow their readout to be switched to fluorescence intensity, fluorescence lifetime or bioluminescence. These FRET pairs thus establish a new concept for the development of highly sensitive and tunable biosensors.


Mouse strain and brain region-specific expression of the glutaminyl cyclases QC and isoQC.

  • Corinna Höfling‎ et al.
  • International journal of developmental neuroscience : the official journal of the International Society for Developmental Neuroscience‎
  • 2014‎

Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamate (pGlu) from glutamine precursors at the N-terminus of a number of peptide hormones, neuropeptides and chemokines. This post-translational modification stabilizes these peptides, protects them from proteolytical degradation or is important for their biological activity. However, QC is also involved in a pathogenic pGlu modification of peptides accumulating in protein aggregation disorders such as Alzheimer's disease and familial Danish and familial British dementia. Its isoenzyme (isoQC) was shown to contribute to aspects of inflammation by pGlu-modifying and thereby stabilizing the monocyte chemoattractant protein CCL2. For the generation of respective animal models and for pharmacological treatment studies the characterization of the mouse strain and brain region-specific expression of QC and isoQC is indispensible. In order to address this issue, we used enzymatic activity assays and specific antibodies to detect both QC variants by immunohistochemistry in nine different mouse strains. Comparing different brain regions, the highest enzymatic QC/isoQC activity was detected in ventral brain, followed by cortex and hippocampus. Immunohistochemical stainings revealed that QC/isoQC activity in cortex mostly arises from isoQC expression. For most brain regions, the highest QC/isoQC activity was detected in C3H and FVB mice, whereas low QC/isoQC activity was present in CD1, SJL and C57 mice. Quantification of QC- and isoQC-immunoreactive cells by unbiased stereology revealed a higher abundance of isoQC- than of QC-immunoreactive neurons in Edinger-Westphal nucleus and in substantia nigra. In the locus coeruleus, however, there were comparable densities of QC- and of isoQC-immunoreactive neurons. These observations are of considerable importance with regard to the selection of appropriate mouse strains for the study of QC/isoQC relevance in mouse models of neurodegeneration and neuroinflammation and for the testing of therapeutical interventions in these models.


Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2.

  • Silke Hauf‎ et al.
  • PLoS biology‎
  • 2005‎

Cohesin is a protein complex that is required to hold sister chromatids together. Cleavage of the Scc1 subunit of cohesin by the protease separase releases the complex from chromosomes and thereby enables the separation of sister chromatids in anaphase. In vertebrate cells, the bulk of cohesin dissociates from chromosome arms already during prophase and prometaphase without cleavage of Scc1. Polo-like kinase 1 (Plk1) and Aurora-B are required for this dissociation process, and Plk1 can phosphorylate the cohesin subunits Scc1 and SA2 in vitro, consistent with the possibility that cohesin phosphorylation by Plk1 triggers the dissociation of cohesin from chromosome arms. However, this hypothesis has not been tested yet, and in budding yeast it has been found that phosphorylation of Scc1 by the Polo-like kinase Cdc5 enhances the cleavability of cohesin, but does not lead to separase-independent dissociation of cohesin from chromosomes. To address the functional significance of cohesin phosphorylation in human cells, we have searched for phosphorylation sites on all four subunits of cohesin by mass spectrometry. We have identified numerous mitosis-specific sites on Scc1 and SA2, mutated them, and expressed nonphosphorylatable forms of both proteins stably at physiological levels in human cells. The analysis of these cells lines, in conjunction with biochemical experiments in vitro, indicate that Scc1 phosphorylation is dispensable for cohesin dissociation from chromosomes in early mitosis but enhances the cleavability of Scc1 by separase. In contrast, our data reveal that phosphorylation of SA2 is essential for cohesin dissociation during prophase and prometaphase, but is not required for cohesin cleavage by separase. The similarity of the phenotype obtained after expression of nonphosphorylatable SA2 in human cells to that seen after the depletion of Plk1 suggests that SA2 is the critical target of Plk1 in the cohesin dissociation pathway.


Multivariate Control of Transcript to Protein Variability in Single Mammalian Cells.

  • Doris Popovic‎ et al.
  • Cell systems‎
  • 2018‎

A long-standing question in quantitative biology is the relationship between mRNA and protein levels of the same gene. Here, we measured mRNA and protein abundance, the phenotypic state, and the population context in thousands of single human cells for 23 genes by combining a unique collection of cell lines with fluorescently tagged endogenous genomic loci and quantitative immunofluorescence with branched DNA single-molecule fluorescence in situ hybridization and computer vision. mRNA and protein abundance displayed a mean single-cell correlation of 0.732 at steady state. Single-cell outliers of linear correlations are in a specific phenotypic state or population context. This is particularly relevant for interpreting mRNA-protein relationships during acute gene induction and turnover, revealing a specific adaptation of gene expression at multiple steps in single cells. Together, we show that single-cell protein abundance can be predicted by multivariate information that integrates mRNA level with the phenotypic state and microenvironment of a particular cell.


A quantitative map of nuclear pore assembly reveals two distinct mechanisms.

  • Shotaro Otsuka‎ et al.
  • Nature‎
  • 2023‎

Understanding how the nuclear pore complex (NPC) is assembled is of fundamental importance to grasp the mechanisms behind its essential function and understand its role during the evolution of eukaryotes1-4. There are at least two NPC assembly pathways-one during the exit from mitosis and one during nuclear growth in interphase-but we currently lack a quantitative map of these events. Here we use fluorescence correlation spectroscopy calibrated live imaging of endogenously fluorescently tagged nucleoporins to map the changes in the composition and stoichiometry of seven major modules of the human NPC during its assembly in single dividing cells. This systematic quantitative map reveals that the two assembly pathways have distinct molecular mechanisms, in which the order of addition of two large structural components, the central ring complex and nuclear filaments are inverted. The dynamic stoichiometry data was integrated to create a spatiotemporal model of the NPC assembly pathway and predict the structures of postmitotic NPC assembly intermediates.


Experimental and computational framework for a dynamic protein atlas of human cell division.

  • Yin Cai‎ et al.
  • Nature‎
  • 2018‎

Essential biological functions, such as mitosis, require tight coordination of hundreds of proteins in space and time. Localization, the timing of interactions and changes in cellular structure are all crucial to ensure the correct assembly, function and regulation of protein complexes1-4. Imaging of live cells can reveal protein distributions and dynamics but experimental and theoretical challenges have prevented the collection of quantitative data, which are necessary for the formulation of a model of mitosis that comprehensively integrates information and enables the analysis of the dynamic interactions between the molecular parts of the mitotic machinery within changing cellular boundaries. Here we generate a canonical model of the morphological changes during the mitotic progression of human cells on the basis of four-dimensional image data. We use this model to integrate dynamic three-dimensional concentration data of many fluorescently knocked-in mitotic proteins, imaged by fluorescence correlation spectroscopy-calibrated microscopy5. The approach taken here to generate a dynamic protein atlas of human cell division is generic; it can be applied to systematically map and mine dynamic protein localization networks that drive cell division in different cell types, and can be conceptually transferred to other cellular functions.


Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides.

  • Olivier Sallin‎ et al.
  • eLife‎
  • 2018‎

We introduce a new class of semisynthetic fluorescent biosensors for the quantification of free nicotinamide adenine dinucleotide (NAD+) and ratios of reduced to oxidized nicotinamide adenine dinucleotide phosphate (NADPH/NADP+) in live cells. Sensing is based on controlling the spatial proximity of two synthetic fluorophores by binding of NAD(P) to the protein component of the sensor. The sensors possess a large dynamic range, can be excited at long wavelengths, are pH-insensitive, have tunable response range and can be localized in different organelles. Ratios of free NADPH/NADP+ are found to be higher in mitochondria compared to those found in the nucleus and the cytosol. By recording free NADPH/NADP+ ratios in response to changes in environmental conditions, we observe how cells can react to such changes by adapting metabolic fluxes. Finally, we demonstrate how a comparison of the effect of drugs on cellular NAD(P) levels can be used to probe mechanisms of action.


Prolonged influenza virus shedding and emergence of antiviral resistance in immunocompromised patients and ferrets.

  • Erhard van der Vries‎ et al.
  • PLoS pathogens‎
  • 2013‎

Immunocompromised individuals tend to suffer from influenza longer with more serious complications than otherwise healthy patients. Little is known about the impact of prolonged infection and the efficacy of antiviral therapy in these patients. Among all 189 influenza A virus infected immunocompromised patients admitted to ErasmusMC, 71 were hospitalized, since the start of the 2009 H1N1 pandemic. We identified 11 (15%) cases with prolonged 2009 pandemic virus replication (longer than 14 days), despite antiviral therapy. In 5 out of these 11 (45%) cases oseltamivir resistant H275Y viruses emerged. Given the inherent difficulties in studying antiviral efficacy in immunocompromised patients, we have infected immunocompromised ferrets with either wild-type, or oseltamivir-resistant (H275Y) 2009 pandemic virus. All ferrets showed prolonged virus shedding. In wild-type virus infected animals treated with oseltamivir, H275Y resistant variants emerged within a week after infection. Unexpectedly, oseltamivir therapy still proved to be partially protective in animals infected with resistant virus. Immunocompromised ferrets offer an attractive alternative to study efficacy of novel antiviral therapies.


A quantitative map of human Condensins provides new insights into mitotic chromosome architecture.

  • Nike Walther‎ et al.
  • The Journal of cell biology‎
  • 2018‎

The two Condensin complexes in human cells are essential for mitotic chromosome structure. We used homozygous genome editing to fluorescently tag Condensin I and II subunits and mapped their absolute abundance, spacing, and dynamic localization during mitosis by fluorescence correlation spectroscopy (FSC)-calibrated live-cell imaging and superresolution microscopy. Although ∼35,000 Condensin II complexes are stably bound to chromosomes throughout mitosis, ∼195,000 Condensin I complexes dynamically bind in two steps: prometaphase and early anaphase. The two Condensins rarely colocalize at the chromatid axis, where Condensin II is centrally confined, but Condensin I reaches ∼50% of the chromatid diameter from its center. Based on our comprehensive quantitative data, we propose a three-step hierarchical loop model of mitotic chromosome compaction: Condensin II initially fixes loops of a maximum size of ∼450 kb at the chromatid axis, whose size is then reduced by Condensin I binding to ∼90 kb in prometaphase and ∼70 kb in anaphase, achieving maximum chromosome compaction upon sister chromatid segregation.


Probing coenzyme A homeostasis with semisynthetic biosensors.

  • Lin Xue‎ et al.
  • Nature chemical biology‎
  • 2023‎

Coenzyme A (CoA) is one of the central cofactors of metabolism, yet a method for measuring its concentration in living cells is missing. Here we introduce the first biosensor for measuring CoA levels in different organelles of mammalian cells. The semisynthetic biosensor is generated through the specific labeling of an engineered GFP-HaloTag fusion protein with a fluorescent ligand. Its readout is based on CoA-dependent changes in Förster resonance energy transfer efficiency between GFP and the fluorescent ligand. Using this biosensor, we probe the role of numerous proteins involved in CoA biosynthesis and transport in mammalian cells. On the basis of these studies, we propose a cellular map of CoA biosynthesis that suggests how pools of cytosolic and mitochondrial CoA are maintained.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: