Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Conditional Sox9 ablation reduces chondroitin sulfate proteoglycan levels and improves motor function following spinal cord injury.

  • William M McKillop‎ et al.
  • Glia‎
  • 2013‎

Chondroitin sulfate proteoglycans (CSPGs) found in perineuronal nets and in the glial scar after spinal cord injury have been shown to inhibit axonal growth and plasticity. Since we have previously identified SOX9 as a transcription factor that upregulates the expression of a battery of genes associated with glial scar formation in primary astrocyte cultures, we predicted that conditional Sox9 ablation would result in reduced CSPG expression after spinal cord injury and that this would lead to increased neuroplasticity and improved locomotor recovery. Control and Sox9 conditional knock-out mice were subject to a 70 kdyne contusion spinal cord injury at thoracic level 9. One week after injury, Sox9 conditional knock-out mice expressed reduced levels of CSPG biosynthetic enzymes (Xt-1 and C4st), CSPG core proteins (brevican, neurocan, and aggrecan), collagens 2a1 and 4a1, and Gfap, a marker of astrocyte activation, in the injured spinal cord compared with controls. These changes in gene expression were accompanied by improved hind limb function and locomotor recovery as evaluated by the Basso Mouse Scale (BMS) and rodent activity boxes. Histological assessments confirmed reduced CSPG deposition and collagenous scarring at the lesion of Sox9 conditional knock-out mice, and demonstrated increased neurofilament-positive fibers in the lesion penumbra and increased serotonin immunoreactivity caudal to the site of injury. These results suggest that SOX9 inhibition is a potential strategy for the treatment of SCI.


Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment.

  • Valerie P I Vidal‎ et al.
  • Current biology : CB‎
  • 2005‎

The mammalian hair represents an unparalleled model system to understand both developmental processes and stem cell biology. The hair follicle consists of several concentric epithelial sheaths with the outer root sheath (ORS) forming the outermost layer. Functionally, the ORS has been implicated in the migration of hair stem cells from the stem cell niche toward the hair bulb. However, factors required for the differentiation of this critical cell lineage remain to be identified. Here, we describe an unexpected role of the HMG-box-containing gene Sox9 in hair development.


Sox11 gene disruption causes congenital anomalies of the kidney and urinary tract (CAKUT).

  • Yasmine Neirijnck‎ et al.
  • Kidney international‎
  • 2018‎

Congenital abnormalities of the kidney and the urinary tract (CAKUT) belong to the most common birth defects in human, but the molecular basis for the majority of CAKUT patients remains unknown. Here we show that the transcription factor SOX11 is a crucial regulator of kidney development. SOX11 is expressed in both mesenchymal and epithelial components of the early kidney anlagen. Deletion of Sox11 in mice causes an extension of the domain expressing Gdnf within rostral regions of the nephrogenic cord and results in duplex kidney formation. On the molecular level SOX11 directly binds and regulates a locus control region of the protocadherin B cluster. At later stages of kidney development, SOX11 becomes restricted to the intermediate segment of the developing nephron where it is required for the elongation of Henle's loop. Finally, mutation analysis in a cohort of patients suffering from CAKUT identified a series of rare SOX11 variants, one of which interferes with the transactivation capacity of the SOX11 protein. Taken together these data demonstrate a key role for SOX11 in normal kidney development and may suggest that variants in this gene predispose to CAKUT in humans.


Insulin and obesity transform hypothalamic-pituitary-adrenal axis stemness and function in a hyperactive state.

  • Martin Werdermann‎ et al.
  • Molecular metabolism‎
  • 2021‎

Metabolic diseases are an increasing problem in society with the brain-metabolic axis as a master regulator of the human body for sustaining homeostasis under metabolic stress. However, metabolic inflammation and disease will trigger sustained activation of the hypothalamic-pituitary-adrenal axis. In this study, we investigated the role of metabolic stress on progenitor cells in the hypothalamic-pituitary-adrenal axis.


A cell fitness selection model for neuronal survival during development.

  • Yiqiao Wang‎ et al.
  • Nature communications‎
  • 2019‎

Developmental cell death plays an important role in the construction of functional neural circuits. In vertebrates, the canonical view proposes a selection of the surviving neurons through stochastic competition for target-derived neurotrophic signals, implying an equal potential for neurons to compete. Here we show an alternative cell fitness selection of neurons that is defined by a specific neuronal heterogeneity code. Proprioceptive sensory neurons that will undergo cell death and those that will survive exhibit different molecular signatures that are regulated by retinoic acid and transcription factors, and are independent of the target and neurotrophins. These molecular features are genetically encoded, representing two distinct subgroups of neurons with contrasted functional maturation states and survival outcome. Thus, in this model, a heterogeneous code of intrinsic cell fitness in neighboring neurons provides differential competitive advantage resulting in the selection of cells with higher capacity to survive and functionally integrate into neural networks.


Single-cell transcriptomic profiling redefines the origin and specification of early adrenogonadal progenitors.

  • Yasmine Neirijnck‎ et al.
  • Cell reports‎
  • 2023‎

Adrenal cortex and gonads represent the two major steroidogenic organs in mammals. Both tissues are considered to share a common developmental origin characterized by the expression of Nr5a1/Sf1. The precise origin of adrenogonadal progenitors and the processes driving differentiation toward the adrenal or gonadal fate remain, however, elusive. Here, we provide a comprehensive single-cell transcriptomic atlas of early mouse adrenogonadal development including 52 cell types belonging to twelve major cell lineages. Trajectory reconstruction reveals that adrenogonadal cells emerge from the lateral plate rather than the intermediate mesoderm. Surprisingly, we find that gonadal and adrenal fates have already diverged prior to Nr5a1 expression. Finally, lineage separation into gonadal and adrenal fates involves canonical versus non-canonical Wnt signaling and differential expression of Hox patterning genes. Thus, our study provides important insights into the molecular programs of adrenal and gonadal fate choice and will be a valuable resource for further research into adrenogonadal ontogenesis.


The Adult Adrenal Cortex Undergoes Rapid Tissue Renewal in a Sex-Specific Manner.

  • Anaëlle Grabek‎ et al.
  • Cell stem cell‎
  • 2019‎

Evolution has resulted in profound differences between males and females that extend to non-reproductive organs and are reflected in the susceptibility and progression of diseases. However, the cellular and molecular basis for these differences remains largely unknown. Here we report that adrenal gland tissue renewal is highly active and sexually dimorphic, with female mice showing a 3-fold higher turnover than males. Moreover, in males, homeostasis relies on proliferation of cells within the steroidogenic zone, but females employ an additional stem and/or progenitor compartment situated in the adrenal capsule. Using lineage tracing, sex reversal models, gonadectomy, and dihydrotestosterone treatments, we further show that sex-specific stem cell activity is driven by male hormones that repress recruitment of Gli1+ stem cells from the capsule and cell proliferation. Taken together, our findings provide a molecular and cellular basis for adrenal sex dimorphism that may contribute to the increased incidence of adrenal diseases in females.


Alternatively spliced isoforms of WT1 control podocyte-specific gene expression.

  • Jonathan Lefebvre‎ et al.
  • Kidney international‎
  • 2015‎

The Wilms' tumor suppressor WT1 is a key regulator of podocyte function that is mutated in Denys-Drash and Frasier syndromes. Here we have used an integrative approach employing ChIP, exon array, and genetic analyses in mice to address general and isoform-specific functions of WT1 in podocyte differentiation. Analysis of ChIP-Seq data showed that almost half of the podocyte-specific genes are direct targets of WT1. Bioinformatic analysis further identified coactivator FOXC1-binding sites in proximity to WT1-bound regions, thus supporting coordinated action of these transcription factors in regulating podocyte-specific genes. Transcriptional profiling of mice lacking the WT1 alternative splice isoform (+KTS) had a more restrictive set of genes whose expression depends on these alternatively spliced isoforms. One of these genes encodes the membrane-associated guanylate kinase MAGI2, a protein that localizes to the base of the slit diaphragm. Using functional analysis in mice, we further show that MAGI2α is essential for proper localization of nephrin and the assembly of the slit diaphragm complex. Finally, a dramatic reduction of MAGI2 was found in an LPS mouse model of glomerular injury and in genetic cases of human disease. Thus, our study highlights the central role of WT1 in podocyte differentiation, identifies that WT1 has a central role in podocyte differentiation, and identifies MAGI2α as the crucial isoform in slit diaphragm assembly, suggesting a causative role of this gene in the etiology of glomerular disorders.


R-spondin signalling is essential for the maintenance and differentiation of mouse nephron progenitors.

  • Valerie Pi Vidal‎ et al.
  • eLife‎
  • 2020‎

During kidney development, WNT/β-catenin signalling has to be tightly controlled to ensure proliferation and differentiation of nephron progenitor cells. Here, we show in mice that the signalling molecules RSPO1 and RSPO3 act in a functionally redundant manner to permit WNT/β-catenin signalling and their genetic deletion leads to a rapid decline of nephron progenitors. By contrast, tissue specific deletion in cap mesenchymal cells abolishes mesenchyme to epithelial transition (MET) that is linked to a loss of Bmp7 expression, absence of SMAD1/5 phosphorylation and a concomitant failure to activate Lef1, Fgf8 and Wnt4, thus explaining the observed phenotype on a molecular level. Surprisingly, the full knockout of LGR4/5/6, the cognate receptors of R-spondins, only mildly affects progenitor numbers, but does not interfere with MET. Taken together our data demonstrate key roles for R-spondins in permitting stem cell maintenance and differentiation and reveal Lgr-dependent and independent functions for these ligands during kidney formation.


PKA inhibits WNT signalling in adrenal cortex zonation and prevents malignant tumour development.

  • Coralie Drelon‎ et al.
  • Nature communications‎
  • 2016‎

Adrenal cortex physiology relies on functional zonation, essential for production of aldosterone by outer zona glomerulosa (ZG) and glucocorticoids by inner zona fasciculata (ZF). The cortex undergoes constant cell renewal, involving recruitment of subcapsular progenitors to ZG fate and subsequent lineage conversion to ZF identity. Here we show that WNT4 is an important driver of WNT pathway activation and subsequent ZG differentiation and demonstrate that PKA activation prevents ZG differentiation through WNT4 repression and WNT pathway inhibition. This suggests that PKA activation in ZF is a key driver of WNT inhibition and lineage conversion. Furthermore, we provide evidence that constitutive PKA activation inhibits, whereas partial inactivation of PKA catalytic activity stimulates β-catenin-induced tumorigenesis. Together, both lower PKA activity and higher WNT pathway activity lead to poorer prognosis in adrenocortical carcinoma (ACC) patients. These observations suggest that PKA acts as a tumour suppressor in the adrenal cortex, through repression of WNT signalling.


The WTX/AMER1 gene family: evolution, signature and function.

  • Agnès Boutet‎ et al.
  • BMC evolutionary biology‎
  • 2010‎

WTX is a novel gene mutated in a proportion of Wilms' tumors and in patients suffering from sclerosing bone dysplasia. On the molecular level WTX has been shown to act as an antagonist of canonical Wnt/β-catenin signaling in fish and mammals thus linking it to an essential pathway involved in normal development and cancer formation. Interestingly, WTX seems to also localize to an intranuclear component called paraspeckles. In spite of the growing interest of molecular biologists in WTX, little is known about its paralogs and its phylogenetic history.


The role of Brn4/Pou3f4 and Pax6 in forming the pancreatic glucagon cell identity.

  • R Scott Heller‎ et al.
  • Developmental biology‎
  • 2004‎

Brain 4 (Brn4/Pou3f4) and Pax6 are POU-homeodomain and paired-homeodomain transcription factors, respectively, that are expressed in the brain and the glucagon-expressing cells in the pancreas. Brn4 expression begins at embryonic day 10 in the pancreas, just before pax6 and both appear in the glucagon immunoreactive cells. At a later time point, E19, no Brn4 co-localization is observed with insulin or somatostatin but a rare pancreatic polypeptide (PP)-producing cell can be found, while Pax6 is found in all endocrine cells. These data suggest that brn4 is the only alpha-cell specific transcription factor yet identified; therefore, we sought to analyze alpha-cell development and function in mice with a targeted disruption of the brn4 gene. In homozygous brn4(-/-) mice, pancreatic bud formation, glucagon cell numbers and physiological measurements all appear normal. Examination of other transcription factors found in the glucagon cells showed normal Pax6 and Nkx2.2 immunoreactivity, suggesting that Brn4 does not regulate these transcription factors. Pax6 mutant mice (pax6(Sey/Sey)), with a natural inactivating mutation in pax6, have few endocrine cells but normal numbers of Brn4 and Nkx2.2 cells. The pancreatic phenotype of the pax6 mutants can be rescued with a YAC clone containing the human Pax6 gene.


Retinoic acid synthesis by ALDH1A proteins is dispensable for meiosis initiation in the mouse fetal ovary.

  • Anne-Amandine Chassot‎ et al.
  • Science advances‎
  • 2020‎

In mammals, the timing of meiosis entry is regulated by signals from the gonadal environment. All-trans retinoic acid (ATRA) signaling is considered the key pathway that promotes Stra8 (stimulated by retinoic acid 8) expression and, in turn, meiosis entry. This model, however, is debated because it is based on analyzing the effects of exogenous ATRA on ex vivo gonadal cultures, which not accurately reflects the role of endogenous ATRA. Aldh1a1 and Aldh1a2, two retinaldehyde dehydrogenases synthesizing ATRA, are expressed in the mouse ovaries when meiosis initiates. Contrary to the present view, here, we demonstrate that ATRA-responsive cells are scarce in the ovary. Using three distinct gene deletion models for Aldh1a1;Aldh1a2;Aldh1a3, we show that Stra8 expression is independent of ATRA production by ALDH1A proteins and that germ cells progress through meiosis. Together, these data demonstrate that ATRA signaling is dispensable for instructing meiosis initiation in female germ cells.


Local retinoic acid signaling directs emergence of the extraocular muscle functional unit.

  • Glenda Evangelina Comai‎ et al.
  • PLoS biology‎
  • 2020‎

Coordinated development of muscles, tendons, and their attachment sites ensures emergence of functional musculoskeletal units that are adapted to diverse anatomical demands among different species. How these different tissues are patterned and functionally assembled during embryogenesis is poorly understood. Here, we investigated the morphogenesis of extraocular muscles (EOMs), an evolutionary conserved cranial muscle group that is crucial for the coordinated movement of the eyeballs and for visual acuity. By means of lineage analysis, we redefined the cellular origins of periocular connective tissues interacting with the EOMs, which do not arise exclusively from neural crest mesenchyme as previously thought. Using 3D imaging approaches, we established an integrative blueprint for the EOM functional unit. By doing so, we identified a developmental time window in which individual EOMs emerge from a unique muscle anlage and establish insertions in the sclera, which sets these muscles apart from classical muscle-to-bone type of insertions. Further, we demonstrate that the eyeballs are a source of diffusible all-trans retinoic acid (ATRA) that allow their targeting by the EOMs in a temporal and dose-dependent manner. Using genetically modified mice and inhibitor treatments, we find that endogenous local variations in the concentration of retinoids contribute to the establishment of tendon condensations and attachment sites that precede the initiation of muscle patterning. Collectively, our results highlight how global and site-specific programs are deployed for the assembly of muscle functional units with precise definition of muscle shapes and topographical wiring of their tendon attachments.


Crosstalk between androgen receptor and WNT/β-catenin signaling causes sex-specific adrenocortical hyperplasia in mice.

  • Rodanthi Lyraki‎ et al.
  • Disease models & mechanisms‎
  • 2023‎

Female bias is highly prevalent in conditions such as adrenal cortex hyperplasia and neoplasia, but the reasons behind this phenomenon are poorly understood. In this study, we show that overexpression of the secreted WNT agonist R-spondin 1 (RSPO1) leads to ectopic activation of WNT/β-catenin signaling and causes sex-specific adrenocortical hyperplasia in mice. Although female adrenals show ectopic proliferation, male adrenals display excessive immune system activation and cortical thinning. Using a combination of genetic manipulations and hormonal treatment, we show that gonadal androgens suppress ectopic proliferation in the adrenal cortex and determine the selective regulation of the WNT-related genes Axin2 and Wnt4. Notably, genetic removal of androgen receptor (AR) from adrenocortical cells restores the mitogenic effect of WNT/β-catenin signaling. This is the first demonstration that AR activity in the adrenal cortex determines susceptibility to canonical WNT signaling-induced hyperplasia.


Retinoic acid signaling is directly activated in cardiomyocytes and protects mouse hearts from apoptosis after myocardial infarction.

  • Fabio Da Silva‎ et al.
  • eLife‎
  • 2021‎

Retinoic acid (RA) is an essential signaling molecule for cardiac development and plays a protective role in the heart after myocardial infarction (MI). In both cases, the effect of RA signaling on cardiomyocytes, the principle cell type of the heart, has been reported to be indirect. Here we have developed an inducible murine transgenic RA-reporter line using CreERT2 technology that permits lineage tracing of RA-responsive cells and faithfully recapitulates endogenous RA activity in multiple organs during embryonic development. Strikingly, we have observed a direct RA response in cardiomyocytes during mid-late gestation and after MI. Ablation of RA signaling through deletion of the Aldh1a1/a2/a3 genes encoding RA-synthesizing enzymes leads to increased cardiomyocyte apoptosis in adults subjected to MI. RNA sequencing analysis reveals Tgm2 and Ace1, two genes with well-established links to cardiac repair, as potential targets of RA signaling in primary cardiomyocytes, thereby providing novel links between the RA pathway and heart disease.


Pituitary stem cells produce paracrine WNT signals to control the expansion of their descendant progenitor cells.

  • John P Russell‎ et al.
  • eLife‎
  • 2021‎

In response to physiological demand, the pituitary gland generates new hormone-secreting cells from committed progenitor cells throughout life. It remains unclear to what extent pituitary stem cells (PSCs), which uniquely express SOX2, contribute to pituitary growth and renewal. Moreover, neither the signals that drive proliferation nor their sources have been elucidated. We have used genetic approaches in the mouse, showing that the WNT pathway is essential for proliferation of all lineages in the gland. We reveal that SOX2+ stem cells are a key source of WNT ligands. By blocking secretion of WNTs from SOX2+ PSCs in vivo, we demonstrate that proliferation of neighbouring committed progenitor cells declines, demonstrating that progenitor multiplication depends on the paracrine WNT secretion from SOX2+ PSCs. Our results indicate that stem cells can hold additional roles in tissue expansion and homeostasis, acting as paracrine signalling centres to coordinate the proliferation of neighbouring cells.


Same Difference? Low and High Glucosinolate Brassica rapa Varieties Show Similar Responses Upon Feeding by Two Specialist Root Herbivores.

  • Rebekka Sontowski‎ et al.
  • Frontiers in plant science‎
  • 2019‎

Glucosinolates (GSLs) evolved in Brassicaceae as chemical defenses against herbivores. The GSL content in plants is affected by both abiotic and biotic factors, but also depends on the genetic background of the plant. Since the bitter taste of GSLs can be unfavorable for both livestock and human consumption, several plant varieties with low GSL seed or leaf content have been bred. Due to their lower GSL levels, such varieties can be more susceptible to herbivore pests. However, low GSL varieties may quickly increase GSL levels upon herbivore feeding by activating GSL biosynthesis, hydrolysis, or transporter genes. To analyze differences in herbivore-induced GSL responses in relation to constitutive GSL levels, we selected four Brassica rapa varieties, containing either low or high root GSL levels. Plants were infested either with Delia radicum or Delia floralis larvae. The larvae of both root flies are specialists on Brassica plants. Root samples were collected after 3, 5, and 7 days. We compared the effect of root herbivore damage on the expression of GSL biosynthesis (CYP79A1, CYP83B2), transporter (GTR1A2, GTR2A2), and GSL hydrolysis genes (PEN2, TGG2) in roots of low and high GSL varieties in conjugation with their GSL levels. We found that roots of high GSL varieties contained higher levels of aliphatic, indole, and benzyl GSLs than low GSL varieties. Infestation with D. radicum larvae led to upregulation of indole GSL synthesis genes in low and high GSL varieties. High GSL varieties showed no or later responses than low varieties to D. floralis herbivory. Low GSL varieties additionally upregulated the GSL transporter gene expression. Low GSL varieties did not show a stronger herbivore-induced response than high GSL varieties, which indicates that there is no trade-off between constitutive and induced GSLs.


Mitotic WNT signalling orchestrates neurogenesis in the developing neocortex.

  • Fabio Da Silva‎ et al.
  • The EMBO journal‎
  • 2021‎

The role of WNT/β-catenin signalling in mouse neocortex development remains ambiguous. Most studies demonstrate that WNT/β-catenin regulates progenitor self-renewal but others suggest it can also promote differentiation. Here we explore the role of WNT/STOP signalling, which stabilizes proteins during G2/M by inhibiting glycogen synthase kinase (GSK3)-mediated protein degradation. We show that mice mutant for cyclin Y and cyclin Y-like 1 (Ccny/l1), key regulators of WNT/STOP signalling, display reduced neurogenesis in the developing neocortex. Specifically, basal progenitors, which exhibit delayed cell cycle progression, were drastically decreased. Ccny/l1-deficient apical progenitors show reduced asymmetric division due to an increase in apical-basal astral microtubules. We identify the neurogenic transcription factors Sox4 and Sox11 as direct GSK3 targets that are stabilized by WNT/STOP signalling in basal progenitors during mitosis and that promote neuron generation. Our work reveals that WNT/STOP signalling drives cortical neurogenesis and identifies mitosis as a critical phase for neural progenitor fate.


The adrenal capsule is a signaling center controlling cell renewal and zonation through Rspo3.

  • Valerie Vidal‎ et al.
  • Genes & development‎
  • 2016‎

Adrenal glands are zonated endocrine organs that are essential in controlling body homeostasis. How zonation is induced and maintained and how renewal of the adrenal cortex is ensured remain a mystery. Here we show that capsular RSPO3 signals to the underlying steroidogenic compartment to induce β-catenin signaling and imprint glomerulosa cell fate. Deletion of RSPO3 leads to loss of SHH signaling and impaired organ growth. Importantly, Rspo3 function remains essential in adult life to ensure replenishment of lost cells and maintain the properties of the zona glomerulosa. Thus, the adrenal capsule acts as a central signaling center that ensures replacement of damaged cells and is required to maintain zonation throughout life.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: