Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 64 papers

Population Pharmacokinetic Properties of Piperaquine in Falciparum Malaria: An Individual Participant Data Meta-Analysis.

  • Richard M Hoglund‎ et al.
  • PLoS medicine‎
  • 2017‎

Artemisinin-based combination therapies (ACTs) are the mainstay of the current treatment of uncomplicated Plasmodium falciparum malaria, but ACT resistance is spreading across Southeast Asia. Dihydroartemisinin-piperaquine is one of the five ACTs currently recommended by the World Health Organization. Previous studies suggest that young children (<5 y) with malaria are under-dosed. This study utilised a population-based pharmacokinetic approach to optimise the antimalarial treatment regimen for piperaquine.


Artemether-lumefantrine dosing for malaria treatment in young children and pregnant women: A pharmacokinetic-pharmacodynamic meta-analysis.

  • Frank Kloprogge‎ et al.
  • PLoS medicine‎
  • 2018‎

The fixed dose combination of artemether-lumefantrine (AL) is the most widely used treatment for uncomplicated Plasmodium falciparum malaria. Relatively lower cure rates and lumefantrine levels have been reported in young children and in pregnant women during their second and third trimester. The aim of this study was to investigate the pharmacokinetic and pharmacodynamic properties of lumefantrine and the pharmacokinetic properties of its metabolite, desbutyl-lumefantrine, in order to inform optimal dosing regimens in all patient populations.


Prospective Clinical and Molecular Evaluation of Potential Plasmodium ovale curtisi and wallikeri Relapses in a High-transmission Setting.

  • Mirjam Groger‎ et al.
  • Clinical infectious diseases : an official publication of the Infectious Diseases Society of America‎
  • 2019‎

Plasmodium ovale curtisi and wallikeri are perceived as relapsing malarial parasites. Contrary to Plasmodium vivax, direct evidence for this hypothesis is scarce. The aim of this prospective study was to characterize the reappearance patterns of ovale parasites.


Promising approach to reducing Malaria transmission by ivermectin: Sporontocidal effect against Plasmodium vivax in the South American vectors Anopheles aquasalis and Anopheles darlingi.

  • Yudi T Pinilla‎ et al.
  • PLoS neglected tropical diseases‎
  • 2018‎

The mosquito resistance to the insecticides threatens malaria control efforts, potentially becoming a major public health issue. Alternative methods like ivermectin (IVM) administration to humans has been suggested as a possible vector control to reduce Plasmodium transmission. Anopheles aquasalis and Anopheles darlingi are competent vectors for Plasmodium vivax, and they have been responsible for various malaria outbreaks in the coast of Brazil and the Amazon Region of South America.


Population pharmacokinetics and electrocardiographic effects of dihydroartemisinin-piperaquine in healthy volunteers.

  • Palang Chotsiri‎ et al.
  • British journal of clinical pharmacology‎
  • 2017‎

The aims of the present study were to evaluate the pharmacokinetic properties of dihydroartemisinin (DHA) and piperaquine, potential drug-drug interactions with concomitant primaquine treatment, and piperaquine effects on the electrocardiogram in healthy volunteers.


Differential Impact of Nevirapine on Artemether-Lumefantrine Pharmacokinetics in Individuals Stratified by CYP2B6 c.516G>T Genotypes.

  • Sa'ad T Abdullahi‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2020‎

There is an increased recognition of the need to identify and quantify the impact of genetic polymorphisms on drug-drug interactions. This study investigated the pharmacogenetics of the pharmacokinetic drug-drug interaction between nevirapine and artemether-lumefantrine in HIV-positive and HIV-negative adult Nigerian subjects. Thirty each of HIV-infected patients on nevirapine-based antiretroviral therapy and HIV-negative volunteers without clinical malaria, but with predetermined CYP2B6 c.516GG and TT genotypes, were administered a complete treatment dose of 3 days of artemether-lumefantrine. Rich pharmacokinetic sampling prior to and following the last dose was conducted, and the plasma concentrations of artemether/dihydroartemisinin and lumefantrine/desbutyl-lumefantrine were quantified using tandem mass spectrometry. Pharmacokinetic parameters of artemether-lumefantrine and its metabolites in HIV-infected patients on nevirapine were compared to those in the absence of nevirapine in HIV-negative volunteers. Overall, nevirapine reduced exposure to artemether and desbutyl-lumefantrine by 39 and 34%, respectively. These reductions were significantly greater in GG versus TT subjects for artemether (ratio of geometric mean [90% confidence interval]: 0.42 [0.29 to 0.61] versus 0.81 [0.51 to 1.28]) and for desbutyl-lumefantrine (0.56 [0.43 to 0.74] versus 0.75 [0.56 to 1.00]). On the contrary, it increased exposure to dihydroartemisinin and lumefantrine by 47 and 30%, respectively. These increases were significantly higher in TT versus GG subjects for dihydroartemisinin (1.67 [1.20 to 2.34] versus 1.25 [0.88 to 1.78]) and for lumefantrine (1.51 [1.20 to 1.90] versus 1.08 [0.82 to 1.42]). This study underscores the importance of incorporating pharmacogenetics into all drug-drug interaction studies with potential for genetic polymorphisms to influence drug disposition.


Factors affecting the electrocardiographic QT interval in malaria: A systematic review and meta-analysis of individual patient data.

  • Xin Hui S Chan‎ et al.
  • PLoS medicine‎
  • 2020‎

Electrocardiographic QT interval prolongation is the most widely used risk marker for ventricular arrhythmia potential and thus an important component of drug cardiotoxicity assessments. Several antimalarial medicines are associated with QT interval prolongation. However, interpretation of electrocardiographic changes is confounded by the coincidence of peak antimalarial drug concentrations with recovery from malaria. We therefore reviewed all available data to characterise the effects of malaria disease and demographic factors on the QT interval in order to improve assessment of electrocardiographic changes in the treatment and prevention of malaria.


Concentration-dependent mortality of chloroquine in overdose.

  • James A Watson‎ et al.
  • eLife‎
  • 2020‎

Hydroxychloroquine and chloroquine are used extensively in malaria and rheumatological conditions, and now in COVID-19 prevention and treatment. Although generally safe they are potentially lethal in overdose. In-vitro data suggest that high concentrations and thus high doses are needed for COVID-19 infections, but as yet there is no convincing evidence of clinical efficacy. Bayesian regression models were fitted to survival outcomes and electrocardiograph QRS durations from 302 prospectively studied French patients who had taken intentional chloroquine overdoses, of whom 33 died (11%), and 16 healthy volunteers who took 620 mg base chloroquine single doses. Whole blood concentrations of 13.5 µmol/L (95% credible interval 10.1-17.7) were associated with 1% mortality. Prolongation of ventricular depolarization is concentration-dependent with a QRS duration >150 msec independently highly predictive of mortality in chloroquine self-poisoning. Pharmacokinetic modeling predicts that most high dose regimens trialled in COVID-19 are unlikely to cause serious cardiovascular toxicity.


Cardiovascular concentration-effect relationships of amodiaquine and its metabolite desethylamodiaquine: Clinical and preclinical studies.

  • Xin Hui S Chan‎ et al.
  • British journal of clinical pharmacology‎
  • 2023‎

Amodiaquine is a 4-aminoquinoline used extensively for the treatment and prevention of malaria. Orally administered amodiaquine is largely converted to the active metabolite desethylamodiaquine. Amodiaquine can cause bradycardia, hypotension, and electrocardiograph QT interval prolongation, but the relationship of these changes to drug concentrations is not well characterized.


Antimalarial chemoprophylaxis for forest goers in southeast Asia: an open-label, individually randomised controlled trial.

  • Rupam Tripura‎ et al.
  • The Lancet. Infectious diseases‎
  • 2023‎

Malaria in the eastern Greater Mekong subregion has declined to historic lows. Countries in the Greater Mekong subregion are accelerating malaria elimination in the context of increasing antimalarial drug resistance. Infections are now increasingly concentrated in remote, forested foci. No intervention has yet shown satisfactory efficacy against forest-acquired malaria. The aim of this study was to assess the efficacy of malaria chemoprophylaxis among forest goers in Cambodia.


Safe drugs with high potential to block malaria transmission revealed by a spleen-mimetic screening.

  • Mario Carucci‎ et al.
  • Nature communications‎
  • 2023‎

Malaria parasites like Plasmodium falciparum multiply in red blood cells (RBC), which are cleared from the bloodstream by the spleen when their deformability is altered. Drug-induced stiffening of Plasmodium falciparum-infected RBC should therefore induce their elimination from the bloodstream. Here, based on this original mechanical approach, we identify safe drugs with strong potential to block the malaria transmission. By screening 13 555 compounds with spleen-mimetic microfilters, we identified 82 that target circulating transmissible form of P. falciparum. NITD609, an orally administered PfATPase inhibitor with known effects on P. falciparum, killed and stiffened transmission stages in vitro at nanomolar concentrations. Short exposures to TD-6450, an orally-administered NS5A hepatitis C virus inhibitor, stiffened transmission parasite stages and killed asexual stages in vitro at high nanomolar concentrations. A Phase 1 study in humans with a primary safety outcome and a secondary pharmacokinetics outcome ( https://clinicaltrials.gov , ID: NCT02022306) showed no severe adverse events either with single or multiple doses. Pharmacokinetic modelling showed that these concentrations can be reached in the plasma of subjects receiving short courses of TD-6450. This physiologically relevant screen identified multiple mechanisms of action, and safe drugs with strong potential as malaria transmission-blocking agents which could be rapidly tested in clinical trials.


The effect of dosing strategies on the therapeutic efficacy of artesunate-amodiaquine for uncomplicated malaria: a meta-analysis of individual patient data.

  • WorldWide Antimalarial Resistance Network (WWARN) AS-AQ Study Group‎ et al.
  • BMC medicine‎
  • 2015‎

Artesunate-amodiaquine (AS-AQ) is one of the most widely used artemisinin-based combination therapies (ACTs) to treat uncomplicated Plasmodium falciparum malaria in Africa. We investigated the impact of different dosing strategies on the efficacy of this combination for the treatment of falciparum malaria.


Characterization of an in vivo concentration-effect relationship for piperaquine in malaria chemoprevention.

  • Martin Bergstrand‎ et al.
  • Science translational medicine‎
  • 2014‎

A randomized, placebo-controlled trial conducted on the northwest border of Thailand compared malaria chemoprevention with monthly or bimonthly standard 3-day treatment regimens of dihydroartemisinin-piperaquine. Healthy adult male subjects (N = 1000) were followed weekly during 9 months of treatment. Using nonlinear mixed-effects modeling, the concentration-effect relationship for the malaria-preventive effect of piperaquine was best characterized with a sigmoidal Emax relationship, where plasma concentrations of 6.7 ng/ml [relative standard error (RSE), 23%] and 20 ng/ml were found to reduce the hazard of acquiring a malaria infection by 50% [that is, median inhibitory concentration (IC50)] and 95% (IC95), respectively. Simulations of monthly dosing, based on the final model and published pharmacokinetic data, suggested that the incidence of malaria infections over 1 year could be reduced by 70% with a recently suggested dosing regimen compared to the current manufacturer's recommendations for small children (8 to 12 kg). This model provides a rational framework for piperaquine dose optimization in different patient groups.


The safety, effectiveness and concentrations of adjusted lopinavir/ritonavir in HIV-infected adults on rifampicin-based antitubercular therapy.

  • Eric H Decloedt‎ et al.
  • PloS one‎
  • 2012‎

Rifampicin co-administration dramatically reduces plasma lopinavir concentrations. Studies in healthy volunteers and HIV-infected patients showed that doubling the dose of lopinavir/ritonavir (LPV/r) or adding additional ritonavir offsets this interaction. However, high rates of hepatotoxicity were observed in healthy volunteers. We evaluated the safety, effectiveness and pre-dose concentrations of adjusted doses of LPV/r in HIV infected adults treated with rifampicin-based tuberculosis treatment.


Pharmacometric and Electrocardiographic Evaluation of Chloroquine and Azithromycin in Healthy Volunteers.

  • Palang Chotsiri‎ et al.
  • Clinical pharmacology and therapeutics‎
  • 2022‎

Chloroquine and azithromycin were developed in combination for the preventive treatment of malaria in pregnancy, and more recently were proposed as coronavirus disease 2019 (COVID-19) treatment options. Billions of doses of chloroquine have been administered worldwide over the past 70 years but concerns regarding cardiotoxicity, notably the risk of torsades de pointes (TdP), remain. This investigation aimed to characterize the pharmacokinetics and electrocardiographic effects of chloroquine and azithromycin observed in a large previously conducted healthy volunteer study. Healthy adult volunteers (n = 119) were randomized into 5 arms: placebo, chloroquine alone (600 mg base), or chloroquine with either 500 mg, 1,000 mg, or 1,500 mg of azithromycin all given daily for 3 days. Chloroquine and azithromycin levels, measured using liquid-chromatography tandem mass spectrometry, and electrocardiograph intervals were recorded at frequent intervals. Time-matched changes in the PR, QRS, and heart rate-corrected JT, and QT intervals were calculated and the relationship with plasma concentrations was evaluated using linear and nonlinear mixed-effects modeling. Chloroquine and azithromycin pharmacokinetics were described satisfactorily by two- and three-compartment distribution models, respectively. No drug-drug interaction between chloroquine and azithromycin was observed. Chloroquine resulted in concentration-dependent prolongation of the PR, QRS, JTc and QTc intervals with a minimal additional effect of azithromycin. QRS widening contributed ~ 28% of the observed QT prolongation. Chloroquine causes significant concentration-dependent delays in both ventricular depolarization and repolarization. Co-administration of azithromycin did not significantly increase these effects. The arrhythmogenic risk of TdP associated with chloroquine may have been substantially overestimated in studies which did not separate electrocardiograph QRS and JT prolongation.


Arterolane-piperaquine-mefloquine versus arterolane-piperaquine and artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in Kenyan children: a single-centre, open-label, randomised, non-inferiority trial.

  • Mainga Hamaluba‎ et al.
  • The Lancet. Infectious diseases‎
  • 2021‎

Triple antimalarial combination therapies combine potent and rapidly cleared artemisinins or related synthetic ozonides, such as arterolane, with two, more slowly eliminated partner drugs to reduce the risk of resistance. We aimed to assess the safety, tolerability, and efficacy of arterolane-piperaquine-mefloquine versus arterolane-piperaquine and artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in Kenyan children.


Pharmacometrics of high-dose ivermectin in early COVID-19 from an open label, randomized, controlled adaptive platform trial (PLATCOV).

  • William H K Schilling‎ et al.
  • eLife‎
  • 2023‎

There is no generally accepted methodology for in vivo assessment of antiviral activity in SARS-CoV-2 infections. Ivermectin has been recommended widely as a treatment of COVID-19, but whether it has clinically significant antiviral activity in vivo is uncertain.


Ivermectin metabolites reduce Anopheles survival.

  • Kevin C Kobylinski‎ et al.
  • Scientific reports‎
  • 2023‎

Ivermectin mass drug administration to humans or livestock is a potential vector control tool for malaria elimination. The mosquito-lethal effect of ivermectin in clinical trials exceeds that predicted from in vitro laboratory experiments, suggesting that ivermectin metabolites have mosquito-lethal effect. The three primary ivermectin metabolites in humans (i.e., M1 (3″-O-demethyl ivermectin), M3 (4-hydroxymethyl ivermectin), and M6 (3″-O-demethyl, 4-hydroxymethyl ivermectin) were obtained by chemical synthesis or bacterial modification/metabolism. Ivermectin and its metabolites were mixed in human blood at various concentrations, blood-fed to Anopheles dirus and Anopheles minimus mosquitoes, and mortality was observed daily for fourteen days. Ivermectin and metabolite concentrations were quantified by liquid chromatography linked with tandem mass spectrometry to confirm the concentrations in the blood matrix. Results revealed that neither the LC50 nor LC90 values differed between ivermectin and its major metabolites for An. dirus or An. minimus., Additionally, there was no substantial differences in the time to median mosquito mortality when comparing ivermectin and its metabolites, demonstrating an equal rate of mosquito killing between the compounds evaluated. These results demonstrate that ivermectin metabolites have a mosquito-lethal effect equal to the parent compound, contributing to Anopheles mortality after treatment of humans.


Mass Spectrometry-Based Metabolomics Revealed Effects of Metronidazole on Giardia duodenalis.

  • Supaluk Popruk‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2023‎

Giardia duodenalis is a significant protozoan that affects humans and animals. An estimated 280 million G. duodenalis diarrheal cases are recorded annually. Pharmacological therapy is crucial for controlling giardiasis. Metronidazole is the first-line therapy for treating giardiasis. Several metronidazole targets have been proposed. However, the downstream signaling pathways of these targets with respect to their antigiardial action are unclear. In addition, several giardiasis cases have demonstrated treatment failures and drug resistance. Therefore, the development of novel drugs is an urgent need. In this study, we performed a mass spectrometry-based metabolomics study to understand the systemic effects of metronidazole in G. duodenalis. A thorough analysis of metronidazole processes helps identify potential molecular pathways essential for parasite survival. The results demonstrated 350 altered metabolites after exposure to metronidazole. Squamosinin A and N-(2-hydroxyethyl)hexacosanamide were the most up-regulated and down-regulated metabolites, respectively. Proteasome and glycerophospholipid metabolisms demonstrated significant differential pathways. Comparing glycerophospholipid metabolisms of G. duodenalis and humans, the parasite glycerophosphodiester phosphodiesterase was distinct from humans. This protein is considered a potential drug target for treating giardiasis. This study improved our understanding of the effects of metronidazole and identified new potential therapeutic targets for future drug development.


A high-throughput LC-MS/MS assay for piperaquine from dried blood spots: Improving malaria treatment in resource-limited settings.

  • Daniel Blessborn‎ et al.
  • Journal of mass spectrometry and advances in the clinical lab‎
  • 2024‎

Malaria is a parasitic disease that affects many of the poorest economies, resulting in approximately 241 million clinical episodes and 627,000 deaths annually. Piperaquine, when administered with dihydroartemisinin, is an effective drug against the disease. Drug concentration measurements taken on day 7 after treatment initiation have been shown to be a good predictor of therapeutic success with piperaquine. A simple capillary blood collection technique, where blood is dried onto filter paper, is especially suitable for drug studies in remote areas or resource-limited settings or when taking samples from children, toddlers, and infants.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: