Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

Synovial sarcoma of the spine: A report of three cases and review of the literature.

  • Ross C Puffer‎ et al.
  • Surgical neurology international‎
  • 2011‎

Synovial sarcoma (SS) is a rare sarcoma with distinct morphologic and genetic features, which, despite its name, does not arise from synovium. While most SSs (>80%) arise in the deep soft tissue of the extremities, up to 5% of these tumors are encountered in the body axis including the spine, mediastinum, retroperitoneum, and head/neck regions. Reports of SS located within the spinal axis have been rare to date.


Therapeutic Impact of Cytoreductive Surgery and Irradiation of Posterior Fossa Ependymoma in the Molecular Era: A Retrospective Multicohort Analysis.

  • Vijay Ramaswamy‎ et al.
  • Journal of clinical oncology : official journal of the American Society of Clinical Oncology‎
  • 2016‎

Posterior fossa ependymoma comprises two distinct molecular variants termed EPN_PFA and EPN_PFB that have a distinct biology and natural history. The therapeutic value of cytoreductive surgery and radiation therapy for posterior fossa ependymoma after accounting for molecular subgroup is not known.


Intertumoral Heterogeneity within Medulloblastoma Subgroups.

  • Florence M G Cavalli‎ et al.
  • Cancer cell‎
  • 2017‎

While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials.


Pattern of Relapse and Treatment Response in WNT-Activated Medulloblastoma.

  • Liana Nobre‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

Over the past decade, wingless-activated (WNT) medulloblastoma has been identified as a candidate for therapy de-escalation based on excellent survival; however, a paucity of relapses has precluded additional analyses of markers of relapse. To address this gap in knowledge, an international cohort of 93 molecularly confirmed WNT MB was assembled, where 5-year progression-free survival is 0.84 (95%, 0.763-0.925) with 15 relapsed individuals identified. Maintenance chemotherapy is identified as a strong predictor of relapse, with individuals receiving high doses of cyclophosphamide or ifosphamide having only one very late molecularly confirmed relapse (p = 0.032). The anatomical location of recurrence is metastatic in 12 of 15 relapses, with 8 of 12 metastatic relapses in the lateral ventricles. Maintenance chemotherapy, specifically cumulative cyclophosphamide doses, is a significant predictor of relapse across WNT MB. Future efforts to de-escalate therapy need to carefully consider not only the radiation dose but also the chemotherapy regimen and the propensity for metastatic relapses.


TMEM161B regulates cerebral cortical gyration, Sonic Hedgehog signaling, and ciliary structure in the developing central nervous system.

  • Shyam K Akula‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Sonic hedgehog signaling regulates processes of embryonic development across multiple tissues, yet factors regulating context-specific Shh signaling remain poorly understood. Exome sequencing of families with polymicrogyria (disordered cortical folding) revealed multiple individuals with biallelic deleterious variants in TMEM161B, which encodes a multi-pass transmembrane protein of unknown function. Tmem161b null mice demonstrated holoprosencephaly, craniofacial midline defects, eye defects, and spinal cord patterning changes consistent with impaired Shh signaling, but were without limb defects, suggesting a CNS-specific role of Tmem161b. Tmem161b depletion impaired the response to Smoothened activation in vitro and disrupted cortical histogenesis in vivo in both mouse and ferret models, including leading to abnormal gyration in the ferret model. Tmem161b localizes non-exclusively to the primary cilium, and scanning electron microscopy revealed shortened, dysmorphic, and ballooned ventricular zone cilia in the Tmem161b null mouse, suggesting that the Shh-related phenotypes may reflect ciliary dysfunction. Our data identify TMEM161B as a regulator of cerebral cortical gyration, as involved in primary ciliary structure, as a regulator of Shh signaling, and further implicate Shh signaling in human gyral development.


Plant autophagosomes mature into amphisomes prior to their delivery to the central vacuole.

  • Jierui Zhao‎ et al.
  • The Journal of cell biology‎
  • 2022‎

Autophagosomes are double-membraned vesicles that traffic harmful or unwanted cellular macromolecules to the vacuole for recycling. Although autophagosome biogenesis has been extensively studied, autophagosome maturation, i.e., delivery and fusion with the vacuole, remains largely unknown in plants. Here, we have identified an autophagy adaptor, CFS1, that directly interacts with the autophagosome marker ATG8 and localizes on both membranes of the autophagosome. Autophagosomes form normally in Arabidopsis thaliana cfs1 mutants, but their delivery to the vacuole is disrupted. CFS1's function is evolutionarily conserved in plants, as it also localizes to the autophagosomes and plays a role in autophagic flux in the liverwort Marchantia polymorpha. CFS1 regulates autophagic flux by bridging autophagosomes with the multivesicular body-localized ESCRT-I component VPS23A, leading to the formation of amphisomes. Similar to CFS1-ATG8 interaction, disrupting the CFS1-VPS23A interaction blocks autophagic flux and renders plants sensitive to nitrogen starvation. Altogether, our results reveal a conserved vacuolar sorting hub that regulates autophagic flux in plants.


Misregulated E-cadherin expression associated with an aggressive brain tumor phenotype.

  • Laura J Lewis-Tuffin‎ et al.
  • PloS one‎
  • 2010‎

Cadherins are essential components of the adherens junction complexes that mediate cell-cell adhesion and regulate cell motility. During tissue morphogenesis, changes in cadherin expression (known as cadherin switching) are a common mechanism for altering cell fate. Cadherin switching is also common during epithelial tumor progression, where it is thought to promote tumor invasion and metastasis. E-cadherin is the predominant cadherin expressed in epithelial tissues, but its expression is very limited in normal brain.


Recurrent noncoding U1 snRNA mutations drive cryptic splicing in SHH medulloblastoma.

  • Hiromichi Suzuki‎ et al.
  • Nature‎
  • 2019‎

In cancer, recurrent somatic single-nucleotide variants-which are rare in most paediatric cancers-are confined largely to protein-coding genes1-3. Here we report highly recurrent hotspot mutations (r.3A>G) of U1 spliceosomal small nuclear RNAs (snRNAs) in about 50% of Sonic hedgehog (SHH) medulloblastomas. These mutations were not present across other subgroups of medulloblastoma, and we identified these hotspot mutations in U1 snRNA in only <0.1% of 2,442 cancers, across 36 other tumour types. The mutations occur in 97% of adults (subtype SHHδ) and 25% of adolescents (subtype SHHα) with SHH medulloblastoma, but are largely absent from SHH medulloblastoma in infants. The U1 snRNA mutations occur in the 5' splice-site binding region, and snRNA-mutant tumours have significantly disrupted RNA splicing and an excess of 5' cryptic splicing events. Alternative splicing mediated by mutant U1 snRNA inactivates tumour-suppressor genes (PTCH1) and activates oncogenes (GLI2 and CCND2), and represents a target for therapy. These U1 snRNA mutations provide an example of highly recurrent and tissue-specific mutations of a non-protein-coding gene in cancer.


Genetic and epigenetic characterization of posterior pituitary tumors.

  • Simone Schmid‎ et al.
  • Acta neuropathologica‎
  • 2021‎

Pituicytoma (PITUI), granular cell tumor (GCT), and spindle cell oncocytoma (SCO) are rare tumors of the posterior pituitary. Histologically, they may be challenging to distinguish and have been proposed to represent a histological spectrum of a single entity. We performed targeted next-generation sequencing, DNA methylation profiling, and copy number analysis on 47 tumors (14 PITUI; 12 GCT; 21 SCO) to investigate molecular features and explore possibilities of clinically meaningful tumor subclassification. We detected two main epigenomic subgroups by unsupervised clustering of DNA methylation data, though the overall methylation differences were subtle. The largest group (n = 23) contained most PITUIs and a subset of SCOs and was enriched for pathogenic mutations within genes in the MAPK/PI3K pathways (12/17 [71%] of sequenced tumors: FGFR1 (3), HRAS (3), BRAF (2), NF1 (2), CBL (1), MAP2K2 (1), PTEN (1)) and two with accompanying TERT promoter mutation. The second group (n = 16) contained most GCTs and a subset of SCOs, all of which mostly lacked identifiable genetic drivers. Outcome analysis demonstrated that the presence of chromosomal imbalances was significantly associated with reduced progression-free survival especially within the combined PITUI and SCO group (p = 0.031). In summary, we observed only subtle DNA methylation differences between posterior pituitary tumors, indicating that these tumors may be best classified as subtypes of a single entity. Nevertheless, our data indicate differences in mutation patterns and clinical outcome. For a clinically meaningful subclassification, we propose a combined histo-molecular approach into three subtypes: one subtype is defined by granular cell histology, scarcity of identifiable oncogenic mutations, and favorable outcome. The other two subtypes have either SCO or PITUI histology but are segregated by chromosomal copy number profile into a favorable group (no copy number changes) and a less favorable group (copy number imbalances present). Both of the latter groups have recurrent MAPK/PI3K genetic alterations that represent potential therapeutic targets.


Carcinoembryonic antigen-expressing oncolytic measles virus derivative in recurrent glioblastoma: a phase 1 trial.

  • Evanthia Galanis‎ et al.
  • Nature communications‎
  • 2024‎

Measles virus (MV) vaccine strains have shown significant preclinical antitumor activity against glioblastoma (GBM), the most lethal glioma histology. In this first in human trial (NCT00390299), a carcinoembryonic antigen-expressing oncolytic measles virus derivative (MV-CEA), was administered in recurrent GBM patients either at the resection cavity (Group A), or, intratumorally on day 1, followed by a second dose administered in the resection cavity after tumor resection on day 5 (Group B). A total of 22 patients received study treatment, 9 in Group A and 13 in Group B. Primary endpoint was safety and toxicity: treatment was well tolerated with no dose-limiting toxicity being observed up to the maximum feasible dose (2×107 TCID50). Median OS, a secondary endpoint, was 11.6 mo and one year survival was 45.5% comparing favorably with contemporary controls. Other secondary endpoints included assessment of viremia, MV replication and shedding, humoral and cellular immune response to the injected virus. A 22 interferon stimulated gene (ISG) diagonal linear discriminate analysis (DLDA) classification algorithm in a post-hoc analysis was found to be inversely (R = -0.6, p = 0.04) correlated with viral replication and tumor microenvironment remodeling including proinflammatory changes and CD8 + T cell infiltration in post treatment samples. This data supports that oncolytic MV derivatives warrant further clinical investigation and that an ISG-based DLDA algorithm can provide the basis for treatment personalization.


MYB-QKI rearrangements in angiocentric glioma drive tumorigenicity through a tripartite mechanism.

  • Pratiti Bandopadhayay‎ et al.
  • Nature genetics‎
  • 2016‎

Angiocentric gliomas are pediatric low-grade gliomas (PLGGs) without known recurrent genetic drivers. We performed genomic analysis of new and published data from 249 PLGGs, including 19 angiocentric gliomas. We identified MYB-QKI fusions as a specific and single candidate driver event in angiocentric gliomas. In vitro and in vivo functional studies show that MYB-QKI rearrangements promote tumorigenesis through three mechanisms: MYB activation by truncation, enhancer translocation driving aberrant MYB-QKI expression and hemizygous loss of the tumor suppressor QKI. To our knowledge, this represents the first example of a single driver rearrangement simultaneously transforming cells via three genetic and epigenetic mechanisms in a tumor.


A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma.

  • Xiaoyue Chen‎ et al.
  • Nature communications‎
  • 2018‎

Temozolomide (TMZ) was used for the treatment of glioblastoma (GBM) for over a decade, but its treatment benefits are limited by acquired resistance, a process that remains incompletely understood. Here we report that an enhancer, located between the promoters of marker of proliferation Ki67 (MKI67) and O6-methylguanine-DNA-methyltransferase (MGMT) genes, is activated in TMZ-resistant patient-derived xenograft (PDX) lines and recurrent tumor samples. Activation of the enhancer correlates with increased MGMT expression, a major known mechanism for TMZ resistance. We show that forced activation of the enhancer in cell lines with low MGMT expression results in elevated MGMT expression. Deletion of this enhancer in cell lines with high MGMT expression leads to a dramatic reduction of MGMT and a lesser extent of Ki67 expression, increased TMZ sensitivity, and impaired proliferation. Together, these studies uncover a mechanism that regulates MGMT expression, confers TMZ resistance, and potentially regulates tumor proliferation.


Targeting Src family kinases inhibits bevacizumab-induced glioma cell invasion.

  • Deborah Huveldt‎ et al.
  • PloS one‎
  • 2013‎

Anti-VEGF antibody therapy with bevacizumab provides significant clinical benefit in patients with recurrent glioblastoma multiforme (GBM). Unfortunately, progression on bevacizumab therapy is often associated with a diffuse disease recurrence pattern, which limits subsequent therapeutic options. Therefore, there is an urgent need to understand bevacizumab's influence on glioma biology and block it's actions towards cell invasion. To explore the mechanism(s) of GBM cell invasion we have examined a panel of serially transplanted human GBM lines grown either in short-term culture, as xenografts in mouse flank, or injected orthotopically in mouse brain. Using an orthotopic xenograft model that exhibits increased invasiveness upon bevacizumab treatment, we also tested the effect of dasatinib, a broad spectrum SFK inhibitor, on bevacizumab-induced invasion.We show that 1) activation of Src family kinases (SFKs) is common in GBM, 2) the relative invasiveness of 17 serially transplanted GBM xenografts correlates strongly with p120 catenin phosphorylation at Y228, a Src kinase site, and 3) SFK activation assessed immunohistochemically in orthotopic xenografts, as well as the phosphorylation of downstream substrates occurs specifically at the invasive tumor edge. Further, we show that SFK signaling is markedly elevated at the invasive tumor front upon bevacizumab administration, and that dasatinib treatment effectively blocked the increased invasion induced by bevacizumab.Our data are consistent with the hypothesis that the increased invasiveness associated with anti-VEGF therapy is due to increased SFK signaling, and support testing the combination of dasatinib with bevacizumab in the clinic.


SeekFusion - A Clinically Validated Fusion Transcript Detection Pipeline for PCR-Based Next-Generation Sequencing of RNA.

  • Jagadheshwar Balan‎ et al.
  • Frontiers in genetics‎
  • 2021‎

Detecting gene fusions involving driver oncogenes is pivotal in clinical diagnosis and treatment of cancer patients. Recent developments in next-generation sequencing (NGS) technologies have enabled improved assays for bioinformatics-based gene fusions detection. In clinical applications, where a small number of fusions are clinically actionable, targeted polymerase chain reaction (PCR)-based NGS chemistries, such as the QIAseq RNAscan assay, aim to improve accuracy compared to standard RNA sequencing. Existing informatics methods for gene fusion detection in NGS-based RNA sequencing assays traditionally use a transcriptome-based spliced alignment approach or a de-novo assembly approach. Transcriptome-based spliced alignment methods face challenges with short read mapping yielding low quality alignments. De-novo assembly-based methods yield longer contigs from short reads that can be more sensitive for genomic rearrangements, but face performance and scalability challenges. Consequently, there exists a need for a method to efficiently and accurately detect fusions in targeted PCR-based NGS chemistries. We describe SeekFusion, a highly accurate and computationally efficient pipeline enabling identification of gene fusions from PCR-based NGS chemistries. Utilizing biological samples processed with the QIAseq RNAscan assay and in-silico simulated data we demonstrate that SeekFusion gene fusion detection accuracy outperforms popular existing methods such as STAR-Fusion, TOPHAT-Fusion and JAFFA-hybrid. We also present results from 4,484 patient samples tested for neurological tumors and sarcoma, encompassing details on some novel fusions identified.


Prognostic value of medulloblastoma extent of resection after accounting for molecular subgroup: a retrospective integrated clinical and molecular analysis.

  • Eric M Thompson‎ et al.
  • The Lancet. Oncology‎
  • 2016‎

Patients with incomplete surgical resection of medulloblastoma are controversially regarded as having a marker of high-risk disease, which leads to patients undergoing aggressive surgical resections, so-called second-look surgeries, and intensified chemoradiotherapy. All previous studies assessing the clinical importance of extent of resection have not accounted for molecular subgroup. We analysed the prognostic value of extent of resection in a subgroup-specific manner.


Telomere alterations in neurofibromatosis type 1-associated solid tumors.

  • Fausto J Rodriguez‎ et al.
  • Acta neuropathologica communications‎
  • 2019‎

The presence of Alternative lengthening of telomeres (ALT) and/or ATRX loss, as well as the role of other telomere abnormalities, have not been formally studied across the spectrum of NF1-associated solid tumors. Utilizing a telomere-specific FISH assay, we classified tumors as either ALT-positive or having long (without ALT), short, or normal telomere lengths. A total of 426 tumors from 256 NF1 patients were evaluated, as well as 99 MPNST tumor samples that were sporadic or of unknown NF1 status. In the NF1-glioma dataset, ALT was present in the majority of high-grade gliomas: 14 (of 23; 60%) in contrast to only 9 (of 47; 19%) low-grade gliomas (p = 0.0009). In the subset of ALT-negative glioma cases, telomere lengths were estimated and we observed 17 (57%) cases with normal, 12 (40%) cases with abnormally long, and only 1 (3%) case with short telomeres. In the NF1-associated malignant nerve sheath tumor (NF1-MPNST) set (n = 75), ALT was present in 9 (12%). In the subset of ALT-negative NF1-MPNST cases, telomeres were short in 9 (38%), normal in 14 (58%) and long in 1 (3%). In the glioma set, overall survival was significantly decreased for patients with ALT-positive tumors (p < 0.0001). In the NF1-MPNST group, overall survival was superior for patients with tumors with short telomeres (p = 0.003). ALT occurs in a subset of NF1-associated solid tumors and is usually restricted to malignant subsets. In contrast, alterations in telomere lengths are more prevalent than ALT.


Subependymal giant cell astrocytoma-like astrocytoma: a neoplasm with a distinct phenotype and frequent neurofibromatosis type-1-association.

  • Doreen N Palsgrove‎ et al.
  • Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc‎
  • 2018‎

Neurofibromatosis type-1 is a familial genetic syndrome associated with a predisposition to develop peripheral and central nervous system neoplasms. We have previously reported on a subset of gliomas developing in these patients with morphologic features resembling subependymal giant cell astrocytoma, but the molecular features of these tumors remain undefined. A total of 14 tumors were studied and all available slides were reviewed. Immunohistochemical stains and telomere-specific FISH were performed on all cases. In addition, next-generation sequencing was performed on 11 cases using a platform targeting 644 cancer-related genes. The average age at diagnosis was 28 years (range: 4-60, 9F/5M). All tumors involved the supratentorial compartment. Tumors were predominantly low grade (n = 12), with two high-grade tumors, and displayed consistent expression of glial markers. Next-generation sequencing demonstrated inactivating NF1 mutations in 10 (of 11) cases. Concurrent TSC2 and RPTOR mutations were present in two cases (1 sporadic and 1 neurofibromatosis type-1-associated). Interestingly, alternative lengthening of telomeres was present in 4 (of 14) (29%) cases. However, an ATRX mutation associated with aberrant nuclear ATRX expression was identified in only one (of four) cases with alternative lenghtening of telomeres. Gene variants in the DNA helicase RECQL4 (n = 2) and components of the Fanconi anemia complementation group (FANCD2, FANCF, FANCG) (n = 1) were identified in two alternative lenghtening of telomere-positive/ATRX-intact cases. Other variants involved genes related to NOTCH signaling, DNA maintenance/repair pathways, and epigenetic modulators. There were no mutations identified in DAXX, PTEN, PIK3C genes, TP53, H3F3A, HIST1H3B, or in canonical hotspots of IDH1, IDH2, or BRAF. A subset of subependymal giant cell astrocytoma-like astrocytomas are alternative lenghtening of telomere-positive and occur in the absence of ATRX alterations, thereby suggesting mutations in other DNA repair/maintenance genes may also facilitate alternative lenghtening of telomeres. These findings suggest that subependymal giant cell astrocytoma-like astrocytoma represents a biologically distinct group that merits further investigation.


The transcriptional landscape of Shh medulloblastoma.

  • Patryk Skowron‎ et al.
  • Nature communications‎
  • 2021‎

Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of cancers of the developing central nervous system. Here, we use unbiased sequencing of the transcriptome across a large cohort of 250 tumors to reveal differences among molecular subtypes of the disease, and demonstrate the previously unappreciated importance of non-coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS, PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular convergence on a subset of genes by nucleotide variants, copy number aberrations, and gene fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog medulloblastoma and open up opportunities for therapeutic intervention.


Variants in the CDKN2B and RTEL1 regions are associated with high-grade glioma susceptibility.

  • Margaret Wrensch‎ et al.
  • Nature genetics‎
  • 2009‎

The causes of glioblastoma and other gliomas remain obscure. To discover new candidate genes influencing glioma susceptibility, we conducted a principal component-adjusted genome-wide association study (GWAS) of 275,895 autosomal variants among 692 adult high-grade glioma cases (622 from the San Francisco Adult Glioma Study (AGS) and 70 from the Cancer Genome Atlas (TCGA)) and 3,992 controls (602 from AGS and 3,390 from Illumina iControlDB (iControls)). For replication, we analyzed the 13 SNPs with P < 10(-6) using independent data from 176 high-grade glioma cases and 174 controls from the Mayo Clinic. On 9p21, rs1412829 near CDKN2B had discovery P = 3.4 x 10(-8), replication P = 0.0038 and combined P = 1.85 x 10(-10). On 20q13.3, rs6010620 intronic to RTEL1 had discovery P = 1.5 x 10(-7), replication P = 0.00035 and combined P = 3.40 x 10(-9). For both SNPs, the direction of association was the same in discovery and replication phases.


Biology and grading of pleomorphic xanthoastrocytoma-what have we learned about it?

  • Rachael Vaubel‎ et al.
  • Brain pathology (Zurich, Switzerland)‎
  • 2021‎

Pleomorphic xanthoastrocytoma (PXA) is a rare astrocytoma predominantly affecting children and young adults. We performed comprehensive genomic characterization on a cohort of 67 patients with histologically defined PXA (n = 53, 79%) or anaplastic PXA (A-PXA, n = 14, 21%), including copy number analysis (ThermoFisher Oncoscan, n = 67), methylation profiling (Illumina EPIC array, n = 43) and targeted next generation sequencing (n = 32). The most frequent alterations were CDKN2A/B deletion (n = 63; 94%) and BRAF p.V600E (n = 51, 76.1%). In 7 BRAF p.V600 wild-type cases, alternative driver alterations were identified involving BRAF, RAF1 and NF1. Downstream phosphorylation of ERK kinase was uniformly present. Additional pathogenic alterations were rare, with TERT, ATRX and TP53 mutations identified in a small number of tumors, predominantly A-PXA. Methylation-based classification of 46 cases utilizing a comprehensive reference tumor allowed assignment to the PXA methylation class in 40 cases. A minority grouped with the methylation classes of ganglioglioma or pilocytic astrocytoma (n = 2), anaplastic pilocytic astrocytoma (n = 2) or control tissues (n = 2). In 9 cases, tissue was available from matched primary and recurrent tumors, including 8 with anaplastic transformation. At recurrence, two tumors acquired TERT promoter mutations and the majority demonstrated additional non-recurrent copy number alterations. Methylation class was preserved at recurrence. For 62 patients (92.5%), clinical follow-up data were available (median follow-up, 5.4 years). Overall survival was significantly different between PXA and A-PXA (5-year OS 80.8% vs. 47.6%; P = 0.0009) but not progression-free survival (5-year PFS 59.9% vs. 39.8%; P = 0.05). WHO grade remained a strong predictor of overall survival when limited to 38 cases defined as PXA by methylation-based classification. Our data confirm the importance of WHO grading in histologically and epigenetically defined PXA. Methylation-based classification may be helpful in cases with ambiguous morphology, but is largely confirmatory in PXA with well-defined morphology.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: