Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 58 papers

Single-cell analysis of long non-coding RNAs in the developing human neocortex.

  • Siyuan John Liu‎ et al.
  • Genome biology‎
  • 2016‎

Long non-coding RNAs (lncRNAs) comprise a diverse class of transcripts that can regulate molecular and cellular processes in brain development and disease. LncRNAs exhibit cell type- and tissue-specific expression, but little is known about the expression and function of lncRNAs in the developing human brain. Furthermore, it has been unclear whether lncRNAs are highly expressed in subsets of cells within tissues, despite appearing lowly expressed in bulk populations.


Evolution of lysine acetylation in the RNA polymerase II C-terminal domain.

  • Corinne N Simonti‎ et al.
  • BMC evolutionary biology‎
  • 2015‎

RPB1, the largest subunit of RNA polymerase II, contains a highly modifiable C-terminal domain (CTD) that consists of variations of a consensus heptad repeat sequence (Y1S2P3T4S5P6S7). The consensus CTD repeat motif and tandem organization represent the ancestral state of eukaryotic RPB1, but across eukaryotes CTDs show considerable diversity in repeat organization and sequence content. These differences may reflect lineage-specific CTD functions mediated by protein interactions. Mammalian CTDs contain eight non-consensus repeats with a lysine in the seventh position (K7). Posttranslational acetylation of these sites was recently shown to be required for proper polymerase pausing and regulation of two growth factor-regulated genes.


A De Novo Shape Motif Discovery Algorithm Reveals Preferences of Transcription Factors for DNA Shape Beyond Sequence Motifs.

  • Md Abul Hassan Samee‎ et al.
  • Cell systems‎
  • 2019‎

DNA shape adds specificity to sequence motifs but has not been explored systematically outside this context. We hypothesized that DNA-binding proteins (DBPs) preferentially occupy DNA with specific structures ("shape motifs") regardless of whether or not these correspond to high information content sequence motifs. We present ShapeMF, a Gibbs sampling algorithm that identifies de novo shape motifs. Using binding data from hundreds of in vivo and in vitro experiments, we show that most DBPs have shape motifs and can occupy these in the absence of sequence motifs. This "shape-only binding" is common for many DBPs and in regions co-bound by multiple DBPs. When shape and sequence motifs co-occur, they can be overlapping, flanking, or separated by consistent spacing. Finally, DBPs within the same protein family have different shape motifs, explaining their distinct genome-wide occupancy despite having similar sequence motifs. These results suggest that shape motifs not only complement sequence motifs but also facilitate recognition of DNA beyond conventionally defined sequence motifs.


Dynamic BAF chromatin remodeling complex subunit inclusion promotes temporally distinct gene expression programs in cardiogenesis.

  • Swetansu K Hota‎ et al.
  • Development (Cambridge, England)‎
  • 2019‎

Chromatin remodeling complexes instruct cellular differentiation and lineage specific transcription. The BRG1/BRM-associated factor (BAF) complexes are important for several aspects of differentiation. We show that the catalytic subunit gene Brg1 has a specific role in cardiac precursors (CPs) to initiate cardiac gene expression programs and repress non-cardiac expression. Using immunopurification with mass spectrometry, we have determined the dynamic composition of BAF complexes during mammalian cardiac differentiation, identifying several cell-type specific subunits. We focused on the CP- and cardiomyocyte (CM)-enriched subunits BAF60c (SMARCD3) and BAF170 (SMARCC2). Baf60c and Baf170 co-regulate gene expression with Brg1 in CPs, and in CMs their loss results in broadly deregulated cardiac gene expression. BRG1, BAF60c and BAF170 modulate chromatin accessibility, to promote accessibility at activated genes while closing chromatin at repressed genes. BAF60c and BAF170 are required for proper BAF complex composition, and BAF170 loss leads to retention of BRG1 at CP-specific sites. Thus, dynamic interdependent BAF complex subunit assembly modulates chromatin states and thereby participates in directing temporal gene expression programs in cardiogenesis.


HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles.

  • Valentina Saccone‎ et al.
  • Genes & development‎
  • 2014‎

Fibro-adipogenic progenitors (FAPs) are important components of the skeletal muscle regenerative environment. Whether FAPs support muscle regeneration or promote fibro-adipogenic degeneration is emerging as a key determinant in the pathogenesis of muscular diseases, including Duchenne muscular dystrophy (DMD). However, the molecular mechanism that controls FAP lineage commitment and activity is currently unknown. We show here that an HDAC-myomiR-BAF60 variant network regulates the fate of FAPs in dystrophic muscles of mdx mice. Combinatorial analysis of gene expression microarray, genome-wide chromatin remodeling by nuclease accessibility (NA) combined with next-generation sequencing (NA-seq), small RNA sequencing (RNA-seq), and microRNA (miR) high-throughput screening (HTS) against SWI/SNF BAF60 variants revealed that HDAC inhibitors (HDACis) derepress a "latent" myogenic program in FAPs from dystrophic muscles at early stages of disease. Specifically, HDAC inhibition induces two core components of the myogenic transcriptional machinery, MYOD and BAF60C, and up-regulates the myogenic miRs (myomiRs) (miR-1.2, miR-133, and miR-206), which target the alternative BAF60 variants BAF60A and BAF60B, ultimately directing promyogenic differentiation while suppressing the fibro-adipogenic phenotype. In contrast, FAPs from late stage dystrophic muscles are resistant to HDACi-induced chromatin remodeling at myogenic loci and fail to activate the promyogenic phenotype. These results reveal a previously unappreciated disease stage-specific bipotency of mesenchimal cells within the regenerative environment of dystrophic muscles. Resolution of such bipotency by epigenetic intervention with HDACis provides a molecular rationale for the in situ reprogramming of target cells to promote therapeutic regeneration of dystrophic muscles.


Function-based identification of mammalian enhancers using site-specific integration.

  • Diane E Dickel‎ et al.
  • Nature methods‎
  • 2014‎

The accurate and comprehensive identification of functional regulatory sequences in mammalian genomes remains a major challenge. Here we describe site-specific integration fluorescence-activated cell sorting followed by sequencing (SIF-seq), an unbiased, medium-throughput functional assay for the discovery of distant-acting enhancers. Targeted single-copy genomic integration into pluripotent cells, reporter assays and flow cytometry are coupled with high-throughput DNA sequencing to enable parallel screening of large numbers of DNA sequences. By functionally interrogating >500 kilobases (kb) of mouse and human sequence in mouse embryonic stem cells for enhancer activity we identified enhancers at pluripotency loci including NANOG. In in vitro-differentiated cardiomyocytes and neural progenitor cells, we identified cardiac enhancers and neuronal enhancers, respectively. SIF-seq is a powerful and flexible method for de novo functional identification of mammalian enhancers in a potentially wide variety of cell types.


Genome-wide binding of the orphan nuclear receptor TR4 suggests its general role in fundamental biological processes.

  • Henriette O'Geen‎ et al.
  • BMC genomics‎
  • 2010‎

The orphan nuclear receptor TR4 (human testicular receptor 4 or NR2C2) plays a pivotal role in a variety of biological and metabolic processes. With no known ligand and few known target genes, the mode of TR4 function was unclear.


Shox2 mediates Tbx5 activity by regulating Bmp4 in the pacemaker region of the developing heart.

  • Sandra Puskaric‎ et al.
  • Human molecular genetics‎
  • 2010‎

Heart formation requires a highly balanced network of transcriptional activation of genes. The homeodomain transcription factor, Shox2, is essential for the formation of the sinoatrial valves and for the development of the pacemaking system. The elucidation of molecular mechanisms underlying the development of pacemaker tissue has gained clinical interest as defects in its patterning can be related to atrial arrhythmias. We have analyzed putative targets of Shox2 and identified the Bmp4 gene as a direct target. Shox2 interacts directly with the Bmp4 promoter in chromatin immunoprecipitation assays and activates transcription in luciferase-reporter assays. In addition, ectopic expression of Shox2 in Xenopus embryos stimulates transcription of the Bmp4 gene, and silencing of Shox2 in cardiomyocytes leads to a reduction in the expression of Bmp4. In Tbx5(del/+) mice, a model for Holt-Oram syndrome, and Shox2(-/-) mice, we show that the T-box transcription factor Tbx5 is a regulator of Shox2 expression in the inflow tract and that Bmp4 is regulated by Shox2 in this compartment of the embryonic heart. In addition, we could show that Tbx5 acts cooperatively with Nkx2.5 to regulate the expression of Shox2 and Bmp4. This work establishes a link between Tbx5, Shox2 and Bmp4 in the pacemaker region of the developing heart and thus contributes to the unraveling of the intricate interplay between the heart-specific transcriptional machinery and developmental signaling pathways.


A novel reporter allele for monitoring Dll4 expression within the embryonic and adult mouse.

  • Alexander M Herman‎ et al.
  • Biology open‎
  • 2018‎

Canonical Notch signaling requires the presence of a membrane bound ligand and a corresponding transmembrane Notch receptor. Receptor engagement induces multiple proteolytic cleavage events culminating in the nuclear accumulation of the Notch intracellular domain and its binding to a transcriptional co-factor to mediate gene expression. Notch signaling networks are essential regulators of vascular patterning and angiogenesis, as well as myriad other biological processes. Delta-like 4 (Dll4) encodes the earliest Notch ligand detected in arterial cells, and is enriched in sprouting endothelial tip cells. Dll4 expression has often been inferred by proxy using a lacZ knockin reporter allele. This is problematic, as a single copy of Dll4 is haploinsufficient. Additionally, Notch activity regulates Dll4 transcription, making it unclear whether these reporter lines accurately reflect Dll4 expression. Accordingly, precisely defining Dll4 expression is essential for determining its role in development and disease. To address these limitations, we generated a novel BAC transgenic allele with a nuclear-localized β-galactosidase reporter (Dll4-BAC-nlacZ). Through a comparative analysis, we show the BAC line overcomes previous issues of haploinsufficiency, it recapitulates Dll4 expression in vivo, and allows superior visualization and imaging. As such, this novel Dll4 reporter is an important addition to the growing Notch toolkit.


Targeted Degradation of CTCF Decouples Local Insulation of Chromosome Domains from Genomic Compartmentalization.

  • Elphège P Nora‎ et al.
  • Cell‎
  • 2017‎

The molecular mechanisms underlying folding of mammalian chromosomes remain poorly understood. The transcription factor CTCF is a candidate regulator of chromosomal structure. Using the auxin-inducible degron system in mouse embryonic stem cells, we show that CTCF is absolutely and dose-dependently required for looping between CTCF target sites and insulation of topologically associating domains (TADs). Restoring CTCF reinstates proper architecture on altered chromosomes, indicating a powerful instructive function for CTCF in chromatin folding. CTCF remains essential for TAD organization in non-dividing cells. Surprisingly, active and inactive genome compartments remain properly segregated upon CTCF depletion, revealing that compartmentalization of mammalian chromosomes emerges independently of proper insulation of TADs. Furthermore, our data support that CTCF mediates transcriptional insulator function through enhancer blocking but not as a direct barrier to heterochromatin spreading. Beyond defining the functions of CTCF in chromosome folding, these results provide new fundamental insights into the rules governing mammalian genome organization.


Whole blood vs PBMC: compartmental differences in gene expression profiling exemplified in asthma.

  • Daniel He‎ et al.
  • Allergy, asthma, and clinical immunology : official journal of the Canadian Society of Allergy and Clinical Immunology‎
  • 2019‎

Blood has proven to be a useful resource for molecular analysis in numerous biomedical studies, with peripheral blood mononuclear cells (PBMCs) and whole blood being the major specimen types. However, comparative analyses between these two major compartments (PBMCs and whole blood) are few and far between. In this study, we compared gene expression profiles of PBMCs and whole blood samples obtained from research subjects with or without mild allergic asthma.


Regulation of single-cell genome organization into TADs and chromatin nanodomains.

  • Quentin Szabo‎ et al.
  • Nature genetics‎
  • 2020‎

The genome folds into a hierarchy of three-dimensional structures within the nucleus. At the sub-megabase scale, chromosomes form topologically associating domains (TADs)1-4. However, how TADs fold in single cells is elusive. Here, we reveal TAD features inaccessible to cell population analysis by using super-resolution microscopy. TAD structures and physical insulation associated with their borders are variable between individual cells, yet chromatin intermingling is enriched within TADs compared to adjacent TADs in most cells. The spatial segregation of TADs is further exacerbated during cell differentiation. Favored interactions within TADs are regulated by cohesin and CTCF through distinct mechanisms: cohesin generates chromatin contacts and intermingling while CTCF prevents inter-TAD contacts. Furthermore, TADs are subdivided into discrete nanodomains, which persist in cells depleted of CTCF or cohesin, whereas disruption of nucleosome contacts alters their structural organization. Altogether, these results provide a physical basis for the folding of individual chromosomes at the nanoscale.


Genome of the Komodo dragon reveals adaptations in the cardiovascular and chemosensory systems of monitor lizards.

  • Abigail L Lind‎ et al.
  • Nature ecology & evolution‎
  • 2019‎

Monitor lizards are unique among ectothermic reptiles in that they have high aerobic capacity and distinctive cardiovascular physiology resembling that of endothermic mammals. Here, we sequence the genome of the Komodo dragon Varanus komodoensis, the largest extant monitor lizard, and generate a high-resolution de novo chromosome-assigned genome assembly for V. komodoensis using a hybrid approach of long-range sequencing and single-molecule optical mapping. Comparing the genome of V. komodoensis with those of related species, we find evidence of positive selection in pathways related to energy metabolism, cardiovascular homoeostasis, and haemostasis. We also show species-specific expansions of a chemoreceptor gene family related to pheromone and kairomone sensing in V. komodoensis and other lizard lineages. Together, these evolutionary signatures of adaptation reveal the genetic underpinnings of the unique Komodo dragon sensory and cardiovascular systems, and suggest that selective pressure altered haemostasis genes to help Komodo dragons evade the anticoagulant effects of their own saliva. The Komodo dragon genome is an important resource for understanding the biology of monitor lizards and reptiles worldwide.


Systems Biology Methods Applied to Blood and Tissue for a Comprehensive Analysis of Immune Response to Hepatitis B Vaccine in Adults.

  • Rym Ben-Othman‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Conventional vaccine design has been based on trial-and-error approaches, which have been generally successful. However, there have been some major failures in vaccine development and we still do not have highly effective licensed vaccines for tuberculosis, HIV, respiratory syncytial virus, and other major infections of global significance. Approaches at rational vaccine design have been limited by our understanding of the immune response to vaccination at the molecular level. Tools now exist to undertake in-depth analysis using systems biology approaches, but to be fully realized, studies are required in humans with intensive blood and tissue sampling. Methods that support this intensive sampling need to be developed and validated as feasible. To this end, we describe here a detailed approach that was applied in a study of 15 healthy adults, who were immunized with hepatitis B vaccine. Sampling included ~350 mL of blood, 12 microbiome samples, and lymph node fine needle aspirates obtained over a ~7-month period, enabling comprehensive analysis of the immune response at the molecular level, including single cell and tissue sample analysis. Samples were collected for analysis of immune phenotyping, whole blood and single cell gene expression, proteomics, lipidomics, epigenetics, whole blood response to key immune stimuli, cytokine responses, in vitro T cell responses, antibody repertoire analysis and the microbiome. Data integration was undertaken using different approaches-NetworkAnalyst and DIABLO. Our results demonstrate that such intensive sampling studies are feasible in healthy adults, and data integration tools exist to analyze the vast amount of data generated from a multi-omics systems biology approach. This will provide the basis for a better understanding of vaccine-induced immunity and accelerate future rational vaccine design.


WAPL maintains a cohesin loading cycle to preserve cell-type-specific distal gene regulation.

  • Ning Qing Liu‎ et al.
  • Nature genetics‎
  • 2021‎

The cohesin complex has an essential role in maintaining genome organization. However, its role in gene regulation remains largely unresolved. Here we report that the cohesin release factor WAPL creates a pool of free cohesin, in a process known as cohesin turnover, which reloads it to cell-type-specific binding sites. Paradoxically, stabilization of cohesin binding, following WAPL ablation, results in depletion of cohesin from these cell-type-specific regions, loss of gene expression and differentiation. Chromosome conformation capture experiments show that cohesin turnover is important for maintaining promoter-enhancer loops. Binding of cohesin to cell-type-specific sites is dependent on the pioneer transcription factors OCT4 (POU5F1) and SOX2, but not NANOG. We show the importance of cohesin turnover in controlling transcription and propose that a cycle of cohesin loading and off-loading, instead of static cohesin binding, mediates promoter and enhancer interactions critical for gene regulation.


CDX2 dose-dependently influences the gene regulatory network underlying human extraembryonic mesoderm development.

  • Emily A Bulger‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Proper regulation of gene dosage is critical for the development of the early embryo and the extraembryonic tissues that support it. Specifically, loss of Cdx2 in vivo leads to stunted development of the allantois, an extraembryonic mesoderm-derived structure critical for nutrient delivery and waste removal in the early embryo. In this study, we investigate how CDX2 dose-dependently influences the gene regulatory network underlying extraembryonic mesoderm development. We generate an allelic series for CDX2 in human induced pluripotent stem cells (hiPSCs) consisting of WT, heterozygous, and homozygous null CDX2 genotypes, differentiate these cells in a 2D gastruloid model, and subject these cells to multiomic single nucleus RNA and ATAC sequencing. We identify several genes that CDX2 dose-dependently regulate cytoskeletal integrity and adhesiveness in the extraembryonic mesoderm population, including regulators of the VEGF, canonical WNT, and non-canonical WNT signaling pathways. Despite these dose-dependent gene expression patterns, snATAC-seq reveals that heterozygous CDX2 expression is capable of inducing a WT-like chromatin accessibility profile, suggesting accessibility is not sufficient to drive gene expression when the CDX2 dosage is reduced. Finally, because the loss of CDX2 or TBXT phenocopy one another in vivo, we compare differentially expressed genes in our CDX2 knock-out model to those from TBXT knock-out hiPSCs differentiated in an analogous experiment. This comparison identifies several communally misregulated genes that are critical for cytoskeletal integrity and tissue permeability, including ANK3 and ANGPT1. Together, these results clarify how CDX2 dose-dependently regulates gene expression in the extraembryonic mesoderm and suggest these genes may underlie the defects in vascular development and allantoic elongation seen in the absence or reduction of CDX2 in vivo.


Expandable Cardiovascular Progenitor Cells Reprogrammed from Fibroblasts.

  • Yu Zhang‎ et al.
  • Cell stem cell‎
  • 2016‎

Stem cell-based approaches to cardiac regeneration are increasingly viable strategies for treating heart failure. Generating abundant and functional autologous cells for transplantation in such a setting, however, remains a significant challenge. Here, we isolated a cell population with extensive proliferation capacity and restricted cardiovascular differentiation potentials during cardiac transdifferentiation of mouse fibroblasts. These induced expandable cardiovascular progenitor cells (ieCPCs) proliferated extensively for more than 18 passages in chemically defined conditions, with 10(5) starting fibroblasts robustly producing 10(16) ieCPCs. ieCPCs expressed cardiac signature genes and readily differentiated into functional cardiomyocytes (CMs), endothelial cells (ECs), and smooth muscle cells (SMCs) in vitro, even after long-term expansion. When transplanted into mouse hearts following myocardial infarction, ieCPCs spontaneously differentiated into CMs, ECs, and SMCs and improved cardiac function for up to 12 weeks after transplantation. Thus, ieCPCs are a powerful system to study cardiovascular specification and provide strategies for regenerative medicine in the heart.


NKX2-5 regulates the expression of beta-catenin and GATA4 in ventricular myocytes.

  • Ali M Riazi‎ et al.
  • PloS one‎
  • 2009‎

The molecular pathway that controls cardiogenesis is temporally and spatially regulated by master transcriptional regulators such as NKX2-5, Isl1, MEF2C, GATA4, and beta-catenin. The interplay between these factors and their downstream targets are not completely understood. Here, we studied regulation of beta-catenin and GATA4 by NKX2-5 in human fetal cardiac myocytes.


The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage.

  • H Bradley Shaffer‎ et al.
  • Genome biology‎
  • 2013‎

We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species' physiological capacities to withstand extreme anoxia and tissue freezing.


Tinman/Nkx2-5 acts via miR-1 and upstream of Cdc42 to regulate heart function across species.

  • Li Qian‎ et al.
  • The Journal of cell biology‎
  • 2011‎

Unraveling the gene regulatory networks that govern development and function of the mammalian heart is critical for the rational design of therapeutic interventions in human heart disease. Using the Drosophila heart as a platform for identifying novel gene interactions leading to heart disease, we found that the Rho-GTPase Cdc42 cooperates with the cardiac transcription factor Tinman/Nkx2-5. Compound Cdc42, tinman heterozygous mutant flies exhibited impaired cardiac output and altered myofibrillar architecture, and adult heart-specific interference with Cdc42 function is sufficient to cause these same defects. We also identified K(+) channels, encoded by dSUR and slowpoke, as potential effectors of the Cdc42-Tinman interaction. To determine whether a Cdc42-Nkx2-5 interaction is conserved in the mammalian heart, we examined compound heterozygous mutant mice and found conduction system and cardiac output defects. In exploring the mechanism of Nkx2-5 interaction with Cdc42, we demonstrated that mouse Cdc42 was a target of, and negatively regulated by miR-1, which itself was negatively regulated by Nkx2-5 in the mouse heart and by Tinman in the fly heart. We conclude that Cdc42 plays a conserved role in regulating heart function and is an indirect target of Tinman/Nkx2-5 via miR-1.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: