Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 6 showing 101 ~ 120 papers out of 359 papers

Porcine Epidemic Diarrhea Altered Colonic Microbiota Communities in Suckling Piglets.

  • Zhen Tan‎ et al.
  • Genes‎
  • 2019‎

Porcine epidemic diarrhea (PED) is a major gastrointestinal disease afflicting suckling pigs that causes huge industrial economic losses. In this study, we investigated microbiota from the colonic mucosa and content in healthy and PED piglets. High-throughput 16S rRNA gene sequencing was performed to identify inter-group differences. Firmicutes, Fusobacteria, Proteobacteria, and Bacteroidetes were the top four affected phyla. The proportion of Proteobacteria was higher in infected than in healthy piglets, and the opposite was observed for Bacteroidetes (more than four-fold higher in the healthy group). In the infected group, Fusobacterium accounted for 36.56% and 21.61% in the colonic mucosa and contents, respectively, while in the healthy group, they comprised 22.53% and 12.67%, respectively. The percentage of Lactobacillus in healthy colons (15.63%) was considerably higher than that in the disease group (<10%). In both the colonic mucosa and contents, functional enrichment differed significantly between healthy and diseased groups. Overall, infection with the PED virus increased the proportion of harmful bacteria and decreased the proportion of beneficial bacteria in the colons of piglets. Targeting intestinal microbiota could be a promising method for PED prevention, thus opening new avenues for future research.


Design and validation of a DNA-microarray for phylogenetic analysis of bacterial communities in different oral samples and dental implants.

  • Carola Parolin‎ et al.
  • Scientific reports‎
  • 2017‎

The quali-quantitative characterization of the oral microbiota is crucial for an exhaustive knowledge of the oral ecology and the modifications of the microbial composition that occur during periodontal pathologies. In this study, we designed and validated a new phylogenetic DNA-microarray (OralArray) to quickly and reliably characterize the most representative bacterial groups that colonize the oral cavity. The OralArray is based on the Ligation Detection Reaction technology associated to Universal Arrays (LDR-UA), and includes 22 probe sets targeted to bacteria belonging to the phyla Firmicutes, Proteobacteria, Actinobacteria, Bacteroidetes, Fusobacteria, and Spirochaete. The tool is characterized by high specificity, sensitivity and reproducibility. The OralArray was successfully tested and validated on different oral samples (saliva, lingual plaque, supragingival plaque, and healing cap) collected from 10 healthy subjects. For each specimen, a microbial signature was obtained, and our results established the presence of an oral microbial profile specific for each subject. Moreover, the tool was applied to evaluate the efficacy of a disinfectant treatment on the healing caps before their usage. The OralArray is, thus, suitable to study the microbiota associated with various oral sites and to monitor changes arising from therapeutic treatments.


Effect of a Ketogenic Medium Chain Triglyceride-Enriched Diet on the Fecal Microbiota in Canine Idiopathic Epilepsy: A Pilot Study.

  • Sylvia García-Belenguer‎ et al.
  • Veterinary sciences‎
  • 2023‎

Ketogenic diets have been successfully used in people and dogs with idiopathic epilepsy. This study examined the effect of a ketogenic medium chain triglycerides (MCT)- enriched diet administered for one month on the fecal microbiota of epileptic (n = 11) (six with drug-sensitive epilepsy, DSE; five with drug-refractory epilepsy, DRE) and non-epileptic beagle dogs (n = 12). A significant reduction after diet in the relative abundance of bacteria from the Actinobacteria phylum was observed in all dogs. Epileptic dogs showed a higher relative abundance of Lactobacillus compared with non-epileptic dogs at baseline but these differences disappeared after diet. Epileptic dogs also showed a significantly higher abundance of Negativicutes and Selenomonadales after dietary intervention. Baseline microbiota patterns were similar in non-epileptic beagles and dogs with DSE but significantly different from dogs with DRE. In non-epileptic and DSE groups, the MCT diet decreased the relative abundance of Firmicutes and increased that of Bacteroidetes and Fusobacteria, but the opposite effect was observed in dogs with DRE. These results suggest that the MCT diet effect would depend on individual baseline microbiota patterns and that ketogenic diets could help reduce gut microbiota differences between dogs with DRE and DSE.


Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes.

  • Tim R Blower‎ et al.
  • Nucleic acids research‎
  • 2012‎

Toxin-antitoxin systems are widespread in bacteria and archaea. They perform diverse functional roles, including the generation of persistence, maintenance of genetic loci and resistance to bacteriophages through abortive infection. Toxin-antitoxin systems have been divided into three types, depending on the nature of the interacting macromolecules. The recently discovered Type III toxin-antitoxin systems encode protein toxins that are inhibited by pseudoknots of antitoxic RNA, encoded by short tandem repeats upstream of the toxin gene. Recent studies have identified the range of Type I and Type II systems within current sequence databases. Here, structure-based homology searches were combined with iterative protein sequence comparisons to obtain a current picture of the prevalence of Type III systems. Three independent Type III families were identified, according to toxin sequence similarity. The three families were found to be far more abundant and widespread than previously known, with examples throughout the Firmicutes, Fusobacteria and Proteobacteria. Functional assays confirmed that representatives from all three families act as toxin-antitoxin loci within Escherichia coli and at least two of the families confer resistance to bacteriophages. This study shows that active Type III toxin-antitoxin systems are far more diverse than previously known, and suggests that more remain to be identified.


Sputum microbiota profiles of treatment-naïve TB patients in Uganda before and during first-line therapy.

  • David Patrick Kateete‎ et al.
  • Scientific reports‎
  • 2021‎

Information on microbiota dynamics in pulmonary tuberculosis (TB) in Africa is scarce. Here, we sequenced sputa from 120 treatment-naïve TB patients in Uganda, and investigated changes in microbiota of 30 patients with treatment-response follow-up samples. Overall, HIV-status and anti-TB treatment were associated with microbial structural and abundance changes. The predominant phyla were Bacteroidetes, Firmicutes, Proteobacteria, Fusobacteria and Actinobacteria, accounting for nearly 95% of the sputum microbiota composition; the predominant genera across time were Prevotella, Streptococcus, Veillonella, Haemophilus, Neisseria, Alloprevotella, Porphyromonas, Fusobacterium, Gemella, and Rothia. Treatment-response follow-up at month 2 was characterized by a reduction in abundance of Mycobacterium and Fretibacterium, and an increase in Ruminococcus and Peptococcus; month 5 was characterized by a reduction in Tannerella and Fusobacterium, and an increase in members of the family Neisseriaceae. The microbiota core comprised of 44 genera that were stable during treatment. Hierarchical clustering of this core's abundance distinctly separated baseline (month 0) samples from treatment follow-up samples (months 2/5). We also observed a reduction in microbial diversity with 9.1% (CI 6-14%) of the structural variation attributed to HIV-status and anti-TB treatment. Our findings show discernible microbiota signals associated with treatment with potential to inform anti-TB treatment response monitoring.


Grinding Beads Influence Microbial DNA Extraction from Organic-Rich Sub-Seafloor Sediment.

  • Jingjing Niu‎ et al.
  • Microorganisms‎
  • 2022‎

Sub-seafloor sediment is the largest microbial habitat on Earth. The study of microbes in sub-seafloor sediment is largely limited by the technical challenge of acquiring ambient microbial DNA because of sediment heterogeneity. Changes in the extraction method, even just by one step, can affect the extraction yields for complicated sediment samples. In this work, sub-seafloor sediment samples from the Baltic Sea with high organic carbon content were used to evaluate the influence of different grinding beads on DNA extraction. We found that the grinding beads can affect the DNA extraction from the organic-matter- and biosiliceous-clay-rich samples. A mixture of 0.5-mm and 0.1-mm grinding beads exhibited higher DNA yields and recovered more unique taxa than other bead combinations, such as Stenotrophomonas from Gammaproteobacteria and Leptotrichia from Fusobacteria; therefore, these beads are more suitable than the others for DNA extraction from the samples used in this study. This advantage might be magnified in samples with high biomass. On the contrary, the use of only small beads might lead to underestimation for certain Gram-positive strains. Overall, the discovery of abundant widespread deep biosphere clades in our samples indicated that our optimized DNA extraction method successfully recovered the in situ microbial community.


Oral Microcosm Biofilms Grown under Conditions Progressing from Peri-Implant Health, Peri-Implant Mucositis, and Peri-Implantitis.

  • Vanessa Sousa‎ et al.
  • International journal of environmental research and public health‎
  • 2022‎

Peri-implantitis is a disease influenced by dysbiotic microbial communities that play a role in the short- and long-term outcomes of its clinical treatment. The ecological triggers that establish the progression from peri-implant mucositis to peri-implantitis remain unknown. This investigation describes the development of a novel in vitro microcosm biofilm model. Biofilms were grown over 30 days over machined titanium discs in a constant depth film fermentor (CDFF), which was inoculated (I) with pooled human saliva. Following longitudinal biofilm sampling across peri-implant health (PH), peri-implant mucositis (PM), and peri-implantitis (PI) conditions, the characterisation of the biofilms was performed. The biofilm analyses included imaging by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), selective and non-selective culture media of viable biofilms, and 16S rRNA gene amplification and sequencing. Bacterial qualitative shifts were observed by CLSM and SEM across conditions, which were defined by characteristic phenotypes. A total of 9 phyla, 83 genera, and 156 species were identified throughout the experiment. The phyla Proteobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Actinobacteria showed the highest prevalence in PI conditions. This novel in vitro microcosm model provides a high-throughput alternative for growing microcosm biofilms resembling an in vitro progression from PH-PM-PI conditions.


Microbial Communities Associated with Primary and Metastatic Head and Neck Squamous Cell Carcinoma - A High Fusobacterial and Low Streptococcal Signature.

  • Jae M Shin‎ et al.
  • Scientific reports‎
  • 2017‎

Given the potential relationship between head and neck squamous cell carcinoma (HNSCC) and microbial dysbiosis, we profiled the microbiome within healthy normal and tumorous (primary and metastatic) human tissues from the oral cavity, larynx-pharynx, and lymph nodes using 16S rRNA sequencing. Alpha and beta diversity analyses revealed that normal tissues had the greatest richness in community diversity, while the metastatic populations were most closely related to one another. Compared to the normal, the microbiota associated with tumors supported altered abundances in the phyla Fusobacteria, Firmicutes, Actinobacteria and Proteobacteria. Most notably, the relative abundance of Fusobacterium increased whereas Streptococcus decreased in both primary and metastatic samples. Principal coordinate analysis indicated a separation and clustering of samples by tissue status. However, random forest analysis revealed that the microbial profiles alone were a poor predictor for primary and metastatic HNSCC samples. Here, we report that the microbial communities residing in the tumorous tissues are compositionally distinct compared to the normal adjacent tissues. However, likely due to the smaller sample size and sample-to-sample heterogeneity, our prediction models were not able to distinguish by sample types. This work provides a foundation for future studies aimed at understanding the role of the dysbiotic tissue microbiome in HNSCC.


Composition and geographic variation of the bacterial microbiota associated with the coelomic fluid of the sea urchin Paracentrotus lividus.

  • Teresa Faddetta‎ et al.
  • Scientific reports‎
  • 2020‎

In the present work, culture-based and culture-independent investigations were performed to determine the microbiota structure of the coelomic fluid of Mediterranean sea urchin Paracentrotus lividus individuals collected from two distinct geographical sites neighboring a high-density population bay and a nature reserve, respectively. Next Generation Sequencing analysis of 16S rRNA gene (rDNA) showed that members of the Proteobacteria, Bacteroidetes and Fusobacteria phyla, which have been previously reported to be commonly retrieved from marine invertebrates, dominate the overall population of microorganisms colonizing this liquid tissue, with minority bacterial genera exhibiting remarkable differences among individuals. Our results showed that there is a correlation between microbiota structure and geographical location of the echinoderm collection site, highlighting over-representation of metagenomic functions related to amino acid and bioactive peptides metabolism in specimens inhabiting the nature reserve. Finally, we also described the developmental delay and aberrations exhibited by sea urchin embryos exposed to distinct bacterial isolates, and showed that these defects rely upon hydrophilic compound(s) synthesized by the bacterial strains assayed. Altogether, our findings lay the groundwork to decipher the relationships of bacteria with sea urchins in their aquatic environment, also providing an additional layer of information to understand the biological roles of the coelomic fluid.


Major Lipids, Apolipoproteins, and Alterations of Gut Microbiota.

  • Kyung Eun Yun‎ et al.
  • Journal of clinical medicine‎
  • 2020‎

The gut microbiota has been linked to blood lipids. However, the relationship between the gut microbiome and other lipid markers like apolipoproteins A1 (apoA1) and B (apoB) as well as classical lipid markers in Asians remain unclear. Here, we examined the associations between gut microbial diversity and taxonomic compositions with both apolipoproteins and lipid markers in a large number of Korean patients. The fecal 16S rRNA gene sequencing data from 1141 subjects were analyzed and subjects were categorized into control group (G0) or abnormal group (G1) according to blood lipid measurements. The microbial diversity and several taxa of the gut microbiota were significantly associated with triglyceride, apoA1, and apoB levels, but not with total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol levels. The alpha diversity of the gut microbiota was inversely associated with high triglyceride level. Interestingly, G1 of apoA1 showed increased microbial richness and distinct microbial community compared with G0 of apoA1. A high abundance of Fusobacteria and low abundance of Oscillospira were found in the hypertriglyceridemia group. In this large-scale study, we identified associations of gut microbiota with apolipoproteins and classical lipid markers, indicating that the gut microbiota may be an important target for regulating blood lipids.


Microbiome data reveal significant differences in the bacterial diversity in freshwater rohu (Labeo rohita) across the supply chain in Dhaka, Bangladesh.

  • A Q M Robiul Kawser‎ et al.
  • Letters in applied microbiology‎
  • 2022‎

The present study aimed to characterize and compare the skin and gut microbial communities of rohu at various post-harvest stages of consumption using quantitative real-time polymerase chain reaction and 16S rRNA-based amplicon sequencing. Real-time PCR amplification detected higher copy numbers for coliform bacteria-Escherichia coli, Salmonella enterica and Shigella spp. in the marketed fish-compared to fresh and frozen samples. The 16S rRNA data revealed higher alpha diversity measurements in the skin of fish from different retail markets of Dhaka city. Beta ordination revealed distinct clustering of bacterial OTUs for the skin and gut samples from three different groups. At the phylum level, Proteobacteria was most abundant in all groups except the Fusobacteria in the control fish gut. Although Aeromonas was found ubiquitous in all types of samples, diverse bacterial genera were identified in the marketed fish samples. Nonetheless, low species richness was observed for the frozen fish. Most of the differentially abundant bacteria in the skin samples of marketed fish are opportunistic human pathogens enriched at different stages of postharvest handling and processing. Therefore, considering the microbial contamination in the aquatic environment in Bangladesh, post-harvest handling should be performed with proper methods and care to minimize bacterial transmission into fish.


Community structures of mangrove endophytic and rhizosphere bacteria in Zhangjiangkou National Mangrove Nature Reserve.

  • Zongsheng Yuan‎ et al.
  • Scientific reports‎
  • 2023‎

Bacterial communities play an important role in mangrove ecosystems. In order to gain information on the bacterial communities in mangrove species and rhizospheres grown in Zhangjiangkou National Mangrove Nature Reserve, this study collected root, branch, and leaf samples from five mangrove species as well as rhizosphere and non-rhizosphere samples and analyzed the community structure of endophytic bacteria and bacteria in rhizosphere and non-rhizosphere using Illumina high-throughput sequencing technique. Bacteria in 52 phyla, 64 classes, 152 orders, 295 families, and 794 genera were identified, which mainly belonged to Proteobacteria, Cyanobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Fusobacteria, and Nitrospirota. At each taxonomic level, the community structure of the rhizosphere bacteria varied slightly with mangrove species, but endophytic bacteria differed greatly with plant species. The diversity indices of endophytic bacteria in branch and leaf samples of Acanthus ilicifolius were significantly lower, and endophytic bacteria in the plant tissues had higher abundance in the replication/repair and translation Clusters of Orthologous Genes functional categories but lower abundance in the carbohydrate metabolism category. This study helps to understand the community structure and diversity characteristics of endophytic and rhizosphere bacteria in different mangrove plants. Provide a theoretical basis for in-depth research on the functions of mangrove ecosystems.


Microbial population dynamics in response to Pectobacterium atrosepticum infection in potato tubers.

  • Viia Kõiv‎ et al.
  • Scientific reports‎
  • 2015‎

Endophytes are microbes and fungi that live inside plant tissues without damaging the host. Herein we examine the dynamic changes in the endophytic bacterial community in potato (Solanum tuberosum) tuber in response to pathogenic infection by Pectobacterium atrosepticum, which causes soft rot in numerous economically important crops. We quantified community changes using both cultivation and next-generation sequencing of the 16S rRNA gene and found that, despite observing significant variability in both the mass of macerated tissue and structure of the endophytic community between individual potato tubers, P. atrosepticum is always taken over by the endophytes during maceration. 16S rDNA sequencing revealed bacteria from the phyla Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, Fusobacteria, Verrucomicrobia, Acidobacteria, TM7, and Deinococcus-Thermus. Prior to infection, Propionibacterium acnes is frequently among the dominant taxa, yet is out competed by relatively few dominant taxa as the infection proceeds. Two days post-infection, the most abundant sequences in macerated potato tissue are Gammaproteobacteria. The most dominant genera are Enterobacter and Pseudomonas. Eight days post-infection, the number of anaerobic pectolytic Clostridia increases, probably due to oxygen depletion. These results demonstrate that the pathogenesis is strictly initiated by the pathogen (sensu stricto) and proceeds with a major contribution from the endophytic community.


High‑throughput sequencing analyses of oral microbial diversity in healthy people and patients with dental caries and periodontal disease.

  • Tingtao Chen‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Recurrence of oral diseases caused by antibiotics has brought about an urgent requirement to explore the oral microbial diversity in the human oral cavity. In the present study, the high‑throughput sequencing method was adopted to compare the microbial diversity of healthy people and oral patients and sequence analysis was performed by UPARSE software package. The Venn results indicated that a mean of 315 operational taxonomic units (OTUs) was obtained, and 73, 64, 53, 19 and 18 common OTUs belonging to Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria and Fusobacteria, respectively, were identified in healthy people. Moreover, the reduction of Firmicutes and the increase of Proteobacteria in the children group, and the increase of Firmicutes and the reduction of Proteobacteria in the youth and adult groups, indicated that the age bracket and oral disease had largely influenced the tooth development and microbial development in the oral cavity. In addition, the traditional 'pathogenic bacteria' of Firmicutes, Proteobacteria and Bacteroidetes (accounted for >95% of the total sequencing number in each group) indicated that the 'harmful' bacteria may exert beneficial effects on oral health. Therefore, the data will provide certain clues for curing some oral diseases by the strategy of adjusting the disturbed microbial compositions in oral disease to healthy level.


Evolutionary and dietary relationships of wild mammals based on the gut microbiome.

  • Xiaoyang Wu‎ et al.
  • Gene‎
  • 2022‎

Gut microbiome influence the health and evolution of mammals and multiple factors modulate the structure and function of gut microbiome. However, the specific changes of the diets and phylogeny on the gut microbiome were unclear. Here, we compared the gut microbiome of 16 rare wild mammals. All data (>200G 16S rRNA gene sequences) were generated using a high-throughput sequencing platform. Firmicutes and Bacteroidetes were the most predominant phyla in all mammals. However, Proteobacteria was an additionally dominant phylum specifically detected in the microbiome of carnivores and omnivores. Moreover, the dominant phyla in canids were Firmicutes, Bacteroidetes, Proteobacteria, and Fusobacteria. Phylogenetic reconstructions based on the gut microbiome and mitochondrial genome of these mammals were similar. The impact of the host on the microbiome community composition was most evident when considering conspecific and congeneric relationships. Similarity clustering showed that the gut microbiome of herbivores was clustered together, and the other clade comprised both omnivores and carnivores. Collectively, these results revealed that phylogenetic relationships and diet have an important impact on the gut microbiome, and thus the gut microbiome community composition may reflect both the phylogenetic relationships and diets. This study provides valuable basic data to facilitate future efforts related to animal conservation and health.


A bioinformatic strategy for the detection, classification and analysis of bacterial autotransporters.

  • Nermin Celik‎ et al.
  • PloS one‎
  • 2012‎

Autotransporters are secreted proteins that are assembled into the outer membrane of bacterial cells. The passenger domains of autotransporters are crucial for bacterial pathogenesis, with some remaining attached to the bacterial surface while others are released by proteolysis. An enigma remains as to whether autotransporters should be considered a class of secretion system, or simply a class of substrate with peculiar requirements for their secretion. We sought to establish a sensitive search protocol that could identify and characterize diverse autotransporters from bacterial genome sequence data. The new sequence analysis pipeline identified more than 1500 autotransporter sequences from diverse bacteria, including numerous species of Chlamydiales and Fusobacteria as well as all classes of Proteobacteria. Interrogation of the proteins revealed that there are numerous classes of passenger domains beyond the known proteases, adhesins and esterases. In addition the barrel-domain-a characteristic feature of autotransporters-was found to be composed from seven conserved sequence segments that can be arranged in multiple ways in the tertiary structure of the assembled autotransporter. One of these conserved motifs overlays the targeting information required for autotransporters to reach the outer membrane. Another conserved and diagnostic motif maps to the linker region between the passenger domain and barrel-domain, indicating it as an important feature in the assembly of autotransporters.


Comparison of the gut microbial community between obese and lean peoples using 16S gene sequencing in a Japanese population.

  • Akira Andoh‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2016‎

Altered gut microbial ecology contributes to the development of metabolic diseases including obesity. In this study, we performed 16S rRNA sequence analysis of the gut microbiota profiles of obese and lean Japanese populations. The V3-V4 hypervariable regions of 16S rRNA of fecal samples from 10 obese and 10 lean volunteers were sequenced using the Illumina MiSeq(TM)II system. The average body mass index of the obese and lean group were 38.1 and 16.6 kg/m(2), respectively (p<0.01). The Shannon diversity index was significantly higher in the lean group than in the obese group (p<0.01). The phyla Firmicutes and Fusobacteria were significantly more abundant in obese people than in lean people. The abundance of the phylum Bacteroidetes and the Bacteroidetes/Firmicutes ratio were not different between the obese and lean groups. The genera Alistipes, Anaerococcus, Corpococcus, Fusobacterium and Parvimonas increased significantly in obese people, and the genera Bacteroides, Desulfovibrio, Faecalibacterium, Lachnoanaerobaculum and Olsenella increased significantly in lean people. Bacteria species possessing anti-inflammatory properties, such as Faecalibacterium prausnitzii, increased significantly in lean people, but bacteria species possessing pro-inflammatory properties increased in obese people. Obesity-associated gut microbiota in the Japanese population was different from that in Western people.


A diet-change modulates the previously established bacterial gut community in juvenile brown trout (Salmo trutta).

  • Stéphanie C Michl‎ et al.
  • Scientific reports‎
  • 2019‎

The aim of the present study was to investigate the impact of dietary plant proteins on the gut microbiome of first feeding brown trout (Salmo trutta) reproduced from wild stocks and to evaluate whether the initial microbiome of brown trout fry can be permanently manipulated by the first feeding diet. Therefore, brown trout fry was fed diets based on either 0%, 50% or 90% plant-derived proteins from first feeding onwards and via 16S rRNA gene sequencing a strong dietary influence on the bacterial gut community on phylum and order level was detected. Proteobacteria and Fusobacteria were significantly enhanced when fishmeal was integrated into the experimental diet, whereas plant-derived proteins significantly promoted Firmicutes and Bacteroidetes. In order to evaluate whether the first feeding diet had a permanent effect on the initially established microbial gut community of juvenile brown trout, a cross-over diet-change was applied 61 days post first feeding. 48 days after the diet-change, the gut microbiome of all dietary groups was significantly different from the one initially established after first feeding. Moreover, the first feeding diet had no statistically significant influence on the gut microbiome after the diet-change, demonstrating no permanent effect on the gut microbiome formation.


Chironomus ramosus Larval Microbiome Composition Provides Evidence for the Presence of Detoxifying Enzymes.

  • Rotem Sela‎ et al.
  • Microorganisms‎
  • 2021‎

Chironomids (Diptera; Chironomidae) are aquatic insects that are abundant in freshwater. We aimed to study the endogenous microbiota composition of Chironomus ramosus larvae that were sampled from the Mutha River and a laboratory culture in India. Furthermore, we performed a metagenomic analysis of the larval microbiome, sampled from the Mutha River. Significant differences were found between the bacterial community composition of C. ramosus larvae that were sampled from the Mutha River and the laboratory culture. A total of 54.7% of the amplicon sequence variants (ASVs) that were identified in the larvae from the Mutha River were unique, compared to only 12.9% of unique ASVs that were identified from the laboratory-reared larvae. The four most abundant phyla across all samples were: Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes, while the nine most abundant genera were: Aeromonas, Alkanindiges, Breznakia, Cetobacterium, Chryseobacterium, Desulfovibrio, Dysgonomonas, Thiothrix, and Vibrio. Moreover, in the metagenomic analysis, we detected bacterial genes and bacterial pathways that demonstrated the ability to degrade different toxic compounds, detoxify metal, and confer resistance to antibiotics and UV radiation, amongst other functions. The results illuminate the fact that there are detoxifying enzymes in the C. ramosus larval microbiome that possibly play a role in protecting the insect in polluted environments.


Differences in the bacteriome of swab, saliva, and tissue biopsies in oral cancer.

  • Divya Gopinath‎ et al.
  • Scientific reports‎
  • 2021‎

Microbial dysbiosis has been implicated in the pathogenesis of oral cancer. We analyzed the compositional and metabolic profile of the bacteriome in three specific niches in oral cancer patients along with controls using 16SrRNA sequencing (Illumina Miseq) and DADA2 software. We found major differences between patients and control subjects. Bacterial communities associated with the tumor surface and deep paired tumor tissue differed significantly. Tumor surfaces carried elevated abundances of taxa belonging to genera Porphyromonas, Enterobacteriae, Neisseria, Streptococcus and Fusobacteria, whereas Prevotella, Treponema, Sphingomonas, Meiothermus and Mycoplasma genera were significantly more abundant in deep tissue. The most abundant microbial metabolic pathways were those related to fatty-acid biosynthesis, carbon metabolism and amino-acid metabolism on the tumor surface: carbohydrate metabolism and organic polymer degradation were elevated in tumor tissues. The bacteriome of saliva from patients with oral cancer differed significantly from paired tumor tissue in terms of community structure, however remained similar at taxonomic and metabolic levels except for elevated abundances of Streptococcus, Lactobacillus and Bacteroides, and acetoin-biosynthesis, respectively. These shifts to a pro-inflammatory profile are consistent with other studies suggesting oncogenic properties. Importantly, selection of the principal source of microbial DNA is key to ensure reliable, reproducible and comparable results in microbiome studies.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: