Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 359 papers

Complete genome sequence of Sebaldella termitidis type strain (NCTC 11300).

  • Miranda Harmon-Smith‎ et al.
  • Standards in genomic sciences‎
  • 2010‎

Sebaldella termitidis (Sebald 1962) Collins and Shah 1986, is the only species in the genus Sebaldella within the fusobacterial family 'Leptotrichiaceae'. The sole and type strain of the species was first isolated about 50 years ago from intestinal content of Mediterranean termites. The species is of interest for its very isolated phylogenetic position within the phylum Fusobacteria in the tree of life, with no other species sharing more than 90% 16S rRNA sequence similarity. The 4,486,650 bp long genome with its 4,210 protein-coding and 54 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.


Comparison of the Oral Microbiomes of Canines and Their Owners Using Next-Generation Sequencing.

  • Changin Oh‎ et al.
  • PloS one‎
  • 2015‎

The oral microbiome, which is closely associated with many diseases, and the resident pathogenic oral bacteria, which can be transferred by close physical contact, are important public health considerations. Although the dog is the most common companion animal, the composition of the canine oral microbiome, which may include human pathogenic bacteria, and its relationship with that of their owners are unclear. In this study, 16S rDNA pyrosequencing was used to compare the oral microbiomes of 10 dogs and their owners and to identify zoonotic pathogens. Pyrosequencing revealed 246 operational taxonomic units in the 10 samples, representing 57 genera from eight bacterial phyla. Firmicutes (57.6%), Proteobacteria (21.6%), Bacteroidetes (9.8%), Actinobacteria (7.1%), and Fusobacteria (3.9%) were the predominant phyla in the human oral samples, whereas Proteobacteria (25.7%), Actinobacteria (21%), Bacteroidetes (19.7%), Firmicutes (19.3%), and Fusobacteria (12.3%) were predominant in the canine oral samples. The predominant genera in the human samples were Streptococcus (43.9%), Neisseria (10.3%), Haemophilus (9.6%), Prevotella (8.4%), and Veillonella (8.1%), whereas the predominant genera in the canine samples were Actinomyces (17.2%), Unknown (16.8), Porphyromonas (14.8), Fusobacterium (11.8), and Neisseria (7.2%). The oral microbiomes of dogs and their owners were appreciably different, and similarity in the microbiomes of canines and their owners was not correlated with residing in the same household. Oral-to-oral transfer of Neisseria shayeganii, Porphyromonas canigingivalis, Tannerella forsythia, and Streptococcus minor from dogs to humans was suspected. The finding of potentially zoonotic and periodontopathic bacteria in the canine oral microbiome may be a public health concern.


Comparing the bacterial diversity of acute and chronic dental root canal infections.

  • Adriana L Santos‎ et al.
  • PloS one‎
  • 2011‎

This study performed barcoded multiplex pyrosequencing with a 454 FLX instrument to compare the microbiota of dental root canal infections associated with acute (symptomatic) or chronic (asymptomatic) apical periodontitis. Analysis of samples from 9 acute abscesses and 8 chronic infections yielded partial 16S rRNA gene sequences that were taxonomically classified into 916 bacterial species-level operational taxonomic units (OTUs) (at 3% divergence) belonging to 67 genera and 13 phyla. The most abundant phyla in acute infections were Firmicutes (52%), Fusobacteria (17%) and Bacteroidetes (13%), while in chronic infections the dominant were Firmicutes (59%), Bacteroidetes (14%) and Actinobacteria (10%). Members of Fusobacteria were much more prevalent in acute (89%) than in chronic cases (50%). The most abundant/prevalent genera in acute infections were Fusobacterium and Parvimonas. Twenty genera were exclusively detected in acute infections and 18 in chronic infections. Only 18% (n = 165) of the OTUs at 3% divergence were shared by acute and chronic infections. Diversity and richness estimators revealed that acute infections were significantly more diverse than chronic infections. Although a high interindividual variation in bacterial communities was observed, many samples tended to group together according to the type of infection (acute or chronic). This study is one of the most comprehensive in-deep comparisons of the microbiota associated with acute and chronic dental root canal infections and highlights the role of diverse polymicrobial communities as the unit of pathogenicity in acute infections. The overall diversity of endodontic infections as revealed by the pyrosequencing technique was much higher than previously reported for endodontic infections.


Phylogenetic and gene-centric metagenomics of the canine intestinal microbiome reveals similarities with humans and mice.

  • Kelly S Swanson‎ et al.
  • The ISME journal‎
  • 2011‎

This study is the first to use a metagenomics approach to characterize the phylogeny and functional capacity of the canine gastrointestinal microbiome. Six healthy adult dogs were used in a crossover design and fed a low-fiber control diet (K9C) or one containing 7.5% beet pulp (K9BP). Pooled fecal DNA samples from each treatment were subjected to 454 pyrosequencing, generating 503,280 (K9C) and 505,061 (K9BP) sequences. Dominant bacterial phyla included the Bacteroidetes/Chlorobi group and Firmicutes, both of which comprised ∼35% of all sequences, followed by Proteobacteria (13-15%) and Fusobacteria (7-8%). K9C had a greater percentage of Bacteroidetes, Fusobacteria and Proteobacteria, whereas K9BP had greater proportions of the Bacteroidetes/Chlorobi group and Firmicutes. Archaea were not altered by diet and represented ∼1% of all sequences. All archaea were members of Crenarchaeota and Euryarchaeota, with methanogens being the most abundant and diverse. Three fungi phylotypes were present in K9C, but none in K9BP. Less than 0.4% of sequences were of viral origin, with >99% of them associated with bacteriophages. Primary functional categories were not significantly affected by diet and were associated with carbohydrates; protein metabolism; DNA metabolism; cofactors, vitamins, prosthetic groups and pigments; amino acids and derivatives; cell wall and capsule; and virulence. Hierarchical clustering of several gastrointestinal metagenomes demonstrated phylogenetic and metabolic similarity between dogs, humans and mice. More research is required to provide deeper coverage of the canine microbiome, evaluate effects of age, genetics or environment on its composition and activity, and identify its role in gastrointestinal disease.


16S rRNA amplicon sequencing identifies microbiota associated with oral cancer, human papilloma virus infection and surgical treatment.

  • Rafael Guerrero-Preston‎ et al.
  • Oncotarget‎
  • 2016‎

Systemic inflammatory events and localized disease, mediated by the microbiome, may be measured in saliva as head and neck squamous cell carcinoma (HNSCC) diagnostic and prognostic biomonitors. We used a 16S rRNA V3-V5 marker gene approach to compare the saliva microbiome in DNA isolated from Oropharyngeal (OPSCC), Oral Cavity Squamous Cell Carcinoma (OCSCC) patients and normal epithelium controls, to characterize the HNSCC saliva microbiota and examine their abundance before and after surgical resection.The analyses identified a predominance of Firmicutes, Proteobacteria and Bacteroidetes, with less frequent presence of Actinobacteria and Fusobacteria before surgery. At lower taxonomic levels, the most abundant genera were Streptococcus, Prevotella, Haemophilus, Lactobacillus and Veillonella, with lower numbers of Citrobacter and Neisseraceae genus Kingella. HNSCC patients had a significant loss in richness and diversity of microbiota species (p<0.05) compared to the controls. Overall, the Operational Taxonomic Units network shows that the relative abundance of OTU's within genus Streptococcus, Dialister, and Veillonella can be used to discriminate tumor from control samples (p<0.05). Tumor samples lost Neisseria, Aggregatibacter (Proteobacteria), Haemophillus (Firmicutes) and Leptotrichia (Fusobacteria). Paired taxa within family Enterobacteriaceae, together with genus Oribacterium, distinguish OCSCC samples from OPSCC and normal samples (p<0.05). Similarly, only HPV positive samples have an abundance of genus Gemellaceae and Leuconostoc (p<0.05). Longitudinal analyses of samples taken before and after surgery, revealed a reduction in the alpha diversity measure after surgery, together with an increase of this measure in patients that recurred (p<0.05). These results suggest that microbiota may be used as HNSCC diagnostic and prognostic biomonitors.


Profiling the Oral Microbiome and Plasma Biochemistry of Obese Hyperglycemic Subjects in Qatar.

  • Muhammad U Sohail‎ et al.
  • Microorganisms‎
  • 2019‎

The present study is designed to compare demographic characteristics, plasma biochemistry, and the oral microbiome in obese (N = 37) and lean control (N = 36) subjects enrolled at Qatar Biobank, Qatar. Plasma hormones, enzymes, and lipid profiles were analyzed at Hamad Medical Cooperation Diagnostic Laboratory. Saliva microbiome characterization was carried out by 16S rRNA amplicon sequencing using Illumina MiSeq platform. Obese subjects had higher testosterone and sex hormone-binding globulin (SHBG) concentrations compared to the control group. A negative association between BMI and testosterone (P < 0.001, r = -0.64) and SHBG (P < 0.001, r = -0.34) was observed. Irrespective of the study groups, the oral microbiome was predominantly occupied by Streptococcus, Prevotella, and Veillonella species. A generalized linear model revealed that the Firmicutes/Bacteroidetes ratio (2.25 ± 1.83 vs. 1.76 ± 0.58; corrected P-value = 0.04) was higher, and phylum Fusobacteria concentration (4.5 ± 3.0 vs. 6.2 ± 4.3; corrected P-value = 0.05) was low in the obese group compared with the control group. However, no differences in microbiome diversity were observed between the two groups as evaluated by alpha (Kruskal-Wallis P ≥ 0.78) and beta (PERMANOVA P = 0.37) diversity indexes. Certain bacterial phyla (Acidobacteria, Bacteroidetes, Fusobacteria, Proteobacteria, Spirochaetes, and Firmicutes/Bacteroidetes) were positively associated (P = 0.05, r ≤ +0.5) with estradiol, fast food consumption, creatinine, breastfed during infancy, triglycerides, and thyroid-stimulating hormone concentrations. In conclusion, no differences in oral microbiome diversity were observed between the studied groups. However, the Firmicutes/Bacteroidetes ratio, a recognized obesogenic microbiome trait, was higher in the obese subjects. Further studies are warranted to confirm these findings in a larger cohort.


Fecal microbiota transplantation as a new treatment for canine inflammatory bowel disease.

  • Ayaka Niina‎ et al.
  • Bioscience of microbiota, food and health‎
  • 2021‎

In human medicine, fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridioides difficile infection. It has also been tested as a treatment for multiple gastrointestinal diseases, including inflammatory bowel disease (IBD). However, only a few studies have focused on the changes in the microbiome following FMT for canine IBD. Here, we performed FMT in nine dogs with IBD using the fecal matter of healthy dogs and investigated the subsequent changes in the fecal microbiome and clinical signs. In three dogs, the fecal microbiome was examined by 16S rRNA sequencing. Fusobacteria were observed at a low proportion in dogs with IBD. However, the post-FMT microbiome became diverse and showed a significant increase in Fusobacteria proportion. Fusobacterium was detected in the nine dogs by quantitative polymerase chain reaction. The proportion of Fusobacterium in the post-FMT fecal microbiome was significantly increased (p<0.05). The changes in clinical signs (e.g., vomiting, diarrhea, and weight loss) were evaluated according to the canine inflammatory bowel disease activity index. The score of this index significantly decreased in all dogs (p<0.05) with improvements in clinical signs. These improvements were related to the changes in the proportion of microbes, particularly the increase in Fusobacterium. The dogs with IBD showed a lower proportion of Fusobacterium than healthy dogs. This suggests that a low proportion of Fusobacterium is a characteristic feature of canine IBD and that Fusobacterium is involved in this disease. The results of this study may help elucidate the pathogenesis of this disease and its association with Fusobacterium.


Diversity of fumarate reducing bacteria in the bovine rumen revealed by culture dependent and independent approaches.

  • Kimihiro Hattori‎ et al.
  • Anaerobe‎
  • 2008‎

Diversity of fumarate reducing (dissimilating) bacteria in the bovine rumen was analyzed by both culture dependent and independent methodologies. A total of 39 strains were isolated by using three different media and belonged to three different phyla (Proteobacteria, Fusobacteria, and Firmicutes). A primer set that amplified the fumarate reductase gene (frdA) from Proteobacteria was developed and two frdA clone libraries were constructed. Identities of deduced amino acid sequences of cloned frdA amplicons against known sequences ranged from 58% to 85% suggesting the presence of unknown fumarate reducing bacteria. This is the first report on the diversity of fumarate reducing bacteria in the rumen.


Tumor-Associated Microbiota in Proximal and Distal Colorectal Cancer and Their Relationships With Clinical Outcomes.

  • Min Jin‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

The proximal and distal subsites of colorectal cancer (CRC) have distinct differences in their embryonic origin, epidemiology, and prognosis. Therefore, they are not considered as the same disease. However, the possible difference in microbial characterization of the two subsites of CRC is still unclear. In this study, we explored tumor microbiota diversity and composition difference in patients with proximal (N = 187) and distal CRCs (N = 142). This was carried out on cancer tissues and adjacent tissues using bacterial 16S rRNA sequencing. The Kaplan-Meier method was used to analyze the correlation between differential flora and overall survival rate of the patients. It was found that there were significant differences in tumor microbial characteristics between the proximal and distal CRC tissues. The microbiota communities were distinctly richer in the proximal colon tumor tissues than in the distal CRC tissues. Microbial diversity and structure were relatively constant in the paracancerous normal tissues of the proximal and distal colorectum. Generally, microbial communities of CRC tumor tissues were composed of Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. Alpha diversity in the proximal and distal CRC tumor tissues was closely related to specific microflora. The abundance of Fusobacteria was associated with age of patient, tumor diameter, and tumor microsatellite instability (MSI) status of the patients. Moreover, Fusobacteria enrichment was associated with poor prognosis especially in patients with proximal colon cancers, but not in patients with distal CRC. In conclusion, proximal and distal subsites of the CRC present distinct microbiota diversity and community structures. The differences indicate that there are different risk factors across anatomical subsites of CRC, which may provide a new strategy for precise prevention and treatment of CRC in the future.


Strand-biased gene distribution, purine assymetry and environmental factors influence protein evolution in Bacillus.

  • Aranyak Goswami‎ et al.
  • FEBS letters‎
  • 2015‎

A strong purine asymmetry, along with strand-biased gene distribution and the presence of PolC, prevails in Bacillus and some other members of Firmicutes, Fusobacteria and Tenericutes. The analysis of protein features in 21 Bacillus species of diverse metabolic, virulence and ecological traits revealed that purine asymmetry in conjunction with lineage/niche specific constraints significantly influences protein evolution in Bacillus. All Bacillus species, except for Se-respiring Bacillus selenitireducens, display distinct strand-specific biases in amino acid usage, which may affect the isoelectric point or surface charge distribution of proteins with prevalence of acidic and basic residues in the leading and lagging strand proteins, respectively.


Effects of Antibiotic Residues on Fish Gut Microbiome Dysbiosis and Mucosal Barrier-Related Pathogen Susceptibility in Zebrafish Experimental Model.

  • Jun Hyeok Yang‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2024‎

The symbiotic community of microorganisms in the gut plays an important role in the health of the host. While many previous studies have been performed on the interactions between the gut microbiome and the host in mammals, studies in fish are still lacking. In this study, we investigated changes in the intestinal microbiome and pathogen susceptibility of zebrafish (Danio rerio) following chronic antibiotics exposure. The chronic antibiotics exposure assay was performed on zebrafish for 30 days using oxytetracycline (Otc), sulfamethoxazole/trimethoprim (Smx/Tmp), or erythromycin (Ery), which are antibiotics widely used in the aquaculture industry. The microbiome analysis indicated that Fusobacteria, Proteobacteria, Firmicutes, and Bacteroidetes were the dominant phyla in the gut microbiome of the zebrafish used in this study. However, in Smx/Tmp-treated zebrafish, the compositions of Fusobacteria and Proteobacteria were changed significantly, and in Ery-treated zebrafish, the compositions of Proteobacteria and Firmicutes were altered significantly. Although alpha diversity analysis showed that there was no significant difference in the richness, beta diversity analysis revealed a community imbalance in the gut microbiome of all chronically antibiotics-exposed zebrafish. Intriguingly, in zebrafish with dysbiosis in the gut microbiome, the pathogen susceptibility to Edwardsiella piscicida, a representative Gram-negative fish pathogen, was reduced. Gut microbiome imbalance resulted in a higher count of goblet cells in intestinal tissue and an upregulation of genes related to the intestinal mucosal barrier. In addition, as innate immunity was enhanced by the increased mucosal barrier, immune and stress-related gene expression in the intestinal tissue was downregulated. In this study, we provide new insight into the effect of gut microbiome dysbiosis on pathogen susceptibility.


The prevalence of Fusobacterium nucleatum subspecies in the oral cavity stratifies by local health status.

  • Madeline Krieger‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

The ubiquitous inflammophilic pathobiont Fusobacterium nucleatum is widely recognized for its strong association with a variety of human dysbiotic diseases such as periodontitis and oral/extraoral abscesses, as well as multiple types of cancer. F. nucleatum is currently subdivided into four subspecies: F. nucleatum subspecies nucleatum (Fn. nucleatum), animalis (Fn. animalis), polymorphum (Fn. polymorphum), and vincentii/fusiforme (Fn. vincentii). Although these subspecies have been historically considered as functionally interchangeable in the oral cavity, direct clinical evidence is largely lacking for this assertion. Consequently, we assembled a collection of oral clinical specimens to determine whether F. nucleatum subspecies prevalence in the oral cavity stratifies by local oral health status. Patient-matched clinical specimens of both disease-free dental plaque and odontogenic abscess were analyzed with newly developed culture-dependent and culture-independent approaches using 44 and 60 oral biofilm/tooth abscess paired specimens, respectively. Most oral cavities were found to simultaneously harbor multiple F. nucleatum subspecies, with a greater diversity present within dental plaque compared to abscesses. In dental plaque, Fn. polymorphum is clearly the dominant organism, but this changes dramatically within odontogenic abscesses where Fn. animalis is heavily favored over all other fusobacteria. Surprisingly, the most commonly studied F. nucleatum subspecies, Fn. nucleatum, is only a minor constituent in the oral cavity. To gain further insights into the genetic basis for these phenotypes, we subsequently performed pangenome, phylogenetic, and functional enrichment analyses of oral fusobacterial genomes using the Anvi'o platform, which revealed significant genotypic distinctions among F. nucleatum subspecies. Accordingly, our results strongly support a taxonomic reassignment of each F. nucleatum subspecies into distinct Fusobacterium species. Of these, Fn. animalis should be considered as the most clinically relevant at sites of active inflammation, despite being among the least characterized oral fusobacteria.


Metagenomic Analysis of Saliva Reveals Disease-Associated Microbiotas in Patients With Periodontitis and Crohn's Disease-Associated Periodontitis.

  • Boyang Sun‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2021‎

Patients with Crohn's disease frequently develop oral health problems and show a higher prevalence of oral manifestations, such as dental caries and periodontitis, than healthy individuals do. In this study, a metagenomic analysis was carried out to characterize the salivary microbiota in patients with either periodontitis or Crohn's disease-associated periodontitis. Saliva samples were collected from six patients with both Crohn's disease and periodontitis (Cm group), six patients with periodontitis alone (Pm group), and six healthy individuals (Hm group). Genomic DNA was collected from these samples for high-throughput Illumina HiSeq metagenomic sequencing. The composition of the bacterial communities and their metabolic pathways and gene functions were characterized and compared among the three study groups. The salivary microbial communities were significantly different among the three groups, with Firmicutes, Actinobacteria, and Bacteroidetes showing the most significant differences. The Cm and Pm groups had higher abundances of Bacteroides fragilis, Prevotella baroniae, Prevotella enoeca, and Prevotella dentasini than the Hm group. The Cm and Pm groups also showed differences in their salivary microbial communities, in that the Cm group had relatively high abundances of Firmicutes and Proteobacteria, whereas the Pm group had relatively high abundances of Actinobacteria, Bacteroidetes, and Fusobacteria. In total, 34 Pm-associated (e.g., Fusobacteria and Corynebacterium matruchotii), 18 Cm-associated (e.g., Capnocytophaga and Streptococcus oralis), and 18 Hm-associated (e.g., Streptococcus and Bacillales) predominant microbial species were identified. Most genes were involved in carbohydrate and amino acid metabolism, with those of the Cm and Pm groups showing more similarity to one another but significant differences from those of the Hm group. Most of the antibiotic resistance genes were found in the Pm group. In conclusion, the salivary microbial community structure and abundance were distinct among patients with Crohn's disease-associated periodontitis, patients with periodontitis, and healthy individuals. Further studies are needed to evaluate the potential value of these microbiota and microbiome differences in the clinical diagnosis and treatment of oral diseases.


Dynamic Changes in the Gut Microbial Community and Function during Broiler Growth.

  • Maosen Yang‎ et al.
  • Microbiology spectrum‎
  • 2022‎

During the entire growth process, gut microbiota continues to change and has a certain impact on the performance of broilers. Here, we used 16S rRNA gene sequencing to explore the dynamic changes in the fecal bacterial communities and functions in 120 broilers from 4 to 16 weeks of age. We found that the main phyla (Firmicutes, Fusobacteria, Proteobacteria, and Bacteroides) accounted for more than 93.5% of the total bacteria in the feces. The alpha diversity of the fecal microbiota showed a downward trend with time, and the beta diversity showed significant differences at various time points. Then, the study on the differences of microbiota between high-weight (HW) and low-weight (LW) broilers showed that there were differences in the diversity and composition of microbiota between high- and low-weight broilers. Furthermore, we identified 22 genera that may be related to the weight change of broilers. The analysis of flora function reveals their changes in metabolism, genetic information processing, and environmental information processing. Finally, combined with microbial function and cecal transcriptome results, we speculated that microorganisms may affect the immune level and energy metabolism level of broilers through their own carbohydrate metabolism and lipid metabolism and then affect body weight (BW). Our results will help to expand our understanding of intestinal microbiota and provide guidance for the production of high-quality broilers. IMPORTANCE The intestinal microbiota has a certain impact on the performance of broilers. However, the change of intestinal microbiota after 4 weeks of age is not clear, and the mechanism of the effect of microorganisms on the weight change of broilers needs more exploration. After 4 weeks of age, the alpha diversity of microorganisms in broiler feces decreased, and the dominant bacteria were Firmicutes, Fusobacteria, Proteobacteria, and Bacteroides. There were differences in microbiota diversity and composition between high- and low-weight broilers. Intestinal microorganisms may affect the immune level and energy metabolism level of broilers through their own carbohydrate metabolism and lipid metabolism and then affect the body weight. The results are helpful to increase the understanding of intestinal microbiota and provide reference for the production of high-quality broilers.


Effect of summer acupoint application treatment (SAAT) on gut microbiota in healthy Asian adults: A randomized controlled trial.

  • Jie Zhou‎ et al.
  • Medicine‎
  • 2023‎

Acupoint application has served as an important complementary and adjunctive therapy in China. The purpose of this study is to explore the impact of summer acupoint application treatment (SAAT) on the abundance and biological structure of gut microbiota in healthy Asian adults. Based on the CONSORT guidelines, 72 healthy adults were included in this study, randomly divided into 2 groups, receiving either traditional (acupoint application within known relevant meridians, Group A) or sham (treated with placebo prepared by mixing the equal amount of starch and water, Group B) SAAT. SAAT stickers include extracts from Rhizoma Corydalis, Sinapis alba, Euphorbia kansui, Asari Herba, and the treatment group received 3 sessions of SAAT for 24 months, administered to BL13 (Feishu), BL17 (Geshu), BL20 (Pishu), and BL23 (Shenshu) acupoints. Fecal microbial analyses via ribosomal ribonucleic acid (rRNA) sequencing were performed on donor stool samples before and after 2 years of SAAT or placebo treatment to analyze the abundances, diversity, and structure of gut microbiota. No significant baseline differences were present between groups. At the phylum level, the baseline relative abundance of Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria was identified in fecal samples collected from each group. After treatment, the relative abundance of Firmicutes was significantly increased in both groups (P < .05). Notably, a significant decrease in the relative abundance of Fusobacteria was observed in the SAAT treatment group (P < .001), while the abundance of Bacteroidetes was decreased significantly in the placebo group (P < .05). At the genus level, the relative abundance of Faecalibacterium and Subdoligranulum species in the 2 groups were all significantly increased (P < .05). In addition, a significant reduction in the relative abundance of Blautia, Bacteroides, and Dorea in Group A (P < .05) and Eubacterium hallii group and Anaerostipes (P < .05) in Group B was observed after treatment. Our findings indicated SAAT substantially influenced the bacterial community structure in the gut microbiota of healthy Asian adults, which might serve as potential therapeutic targets for related diseases, and provided a foundation for future studies aimed at elucidating the microbial mechanisms underlying SAAT for the treatment of various conditions such as obesity, insulin resistance, irritable bowel syndrome.


Tumor-Associated Microbiota in Esophageal Squamous Cell Carcinoma.

  • Weixiong Yang‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Important evidence indicates the microbiota plays a key role in esophageal squamous cell carcinoma (ESCC). The esophageal microbiota was prospectively investigated in 18 patients with ESCC and 11 patients with physiological normal (PN) esophagus by 16S rRNA gene profiling, using next-generation sequencing. The microbiota composition in tumor tissues of ESCC patients were significantly different from that of patients with PN tissues. The ESCC microbiota was characterized by reduced microbial diversity, by decreased abundance of Bacteroidetes, Fusobacteria, and Spirochaetes. Employing these taxa into a microbial dysbiosis index demonstrated that dysbiosis microbiota had good capacity to discriminate between ESCC and PN esophagus. Functional analysis characterized that ESCC microbiota had altered nitrate reductase and nitrite reductase functions compared with PN group. These results suggest that specific microbes and the microbiota may drive or mitigate ESCC carcinogenesis, and this study will facilitate assigning causal roles in ESCC development to certain microbes and microbiota.


The Urinary Tract Microbiome in Older Women Exhibits Host Genetic and Environmental Influences.

  • A S Adebayo‎ et al.
  • Cell host & microbe‎
  • 2020‎

The urinary microbiome is a relatively unexplored niche that varies with gender. Urinary microbes, especially in aging populations, are associated with morbidity. We present a large-scale study exploring factors defining urinary microbiome composition in community-dwelling older adult women without clinically active infection. Using 1,600 twins, we estimate the contribution of genetic and environmental factors to microbiome variation. The urinary microbiome is distinct from nearby sites and unrelated to stool microbiome with more Actinobacteria, Fusobacteria and Proteobacteria, but fewer Bacteroidetes, Firmicutes and Verrumicrobia. A quarter of variants had heritability estimates greater than 10% with most heritable microbes having potential clinical relevance, including Escherichia-Shigella linked to urinary tract infections. Age, menopausal status, prior UTI, and host genetics were top factors defining the urobiome with increased microbial diversity tending to associate with older age. These findings highlight the distinct composition of the urinary microbiome and significant contributions of host genetics.


Oral Microbiota Community Dynamics Associated With Oral Squamous Cell Carcinoma Staging.

  • Chia-Yu Yang‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Oral squamous cell carcinoma (OSCC) is a highly aggressive cancer and the fourth leading malignancy among males in Taiwan. Some pathogenic bacteria are associated with periodontitis and oral cancer. However, the comprehensive profile of the oral microbiome during the cancer's progression from the early stage to the late stage is still unclear. We profiled the oral microbiota and identified bacteria biomarkers associated with OSCC. The microbiota of an oral rinse from 51 healthy individuals and 197 OSCC patients at different stages were investigated using 16S rRNA V3V4 amplicon sequencing, followed by bioinformatics and statistical analyses. The oral microbiota communities from stage 4 patients showed significantly higher complexity than those from healthy controls. The populations also dynamically changed with the cancer's progression from stage 1 to stage 4. The predominant phyla in the oral samples showed variation in the relative abundance of Fusobacteria, Bacteroidetes, and Actinobacteria. The abundance of Fusobacteria increased significantly with the progression of oral cancer from the healthy controls (2.98%) to OSCC stage 1 (4.35%) through stage 4 (7.92%). At the genus level, the abundance of Fusobacterium increased, while the number of Streptococcus, Haemophilus, Porphyromonas, and Actinomyces decreased with cancer progression. Fusobacterium periodonticum, Parvimonas micra, Streptococcus constellatus, Haemophilus influenza, and Filifactor alocis were associated with OSCC, and they progressively increased in abundance from stage 1 to stage 4. The abundances of Streptococcus mitis, Haemophilus parainfluenzae, and Porphyromonas pasteri were inversely associated with OSCC progression. We selected a bacterial marker panel of three bacteria (upregulated F. periodonticum, down-regulated S. mitis, and P. pasteri), which had an AUC of 0.956 (95% CI = 0.925-0.986) in discriminating OSCC stage 4 from the healthy controls. Furthermore, the functional prediction of oral bacterial communities showed that genes involved in carbohydrate-related metabolism, such as methane metabolism, and energy-metabolism-related parameters, such as oxidative phosphorylation and carbon fixation in photosynthetic organisms, were enriched in late-stage OSCC, while those responsible for amino acid metabolism, such as folate biosynthesis and valine, leucine, and isoleucine biosynthesis, were significantly associated with the healthy controls. In conclusion, our results provided evidence of oral bacteria community changes during oral cancer progression and suggested the possibility of using bacteria as OSCC diagnostic markers.


Changes in Gastric Corpus Microbiota With Age and After Helicobacter pylori Eradication: A Long-Term Follow-Up Study.

  • Cheol Min Shin‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Helicobacter pylori infection changes gastric microbiota profiles. However, it is not clear whether H. pylori eradication can restore the healthy gastric microbiota. Moreover, there has been no study regarding the changes in gastric microbiota with aging. The objective of this study was to investigate the changes in gastric corpus microbiota with age and following H. pylori eradication. Changes in corpus mucosa-associated microbiota were evaluated in 43 individuals with endoscopic follow-up > 1 year, including 8 H. pylori-uninfected and 15 H. pylori-infected subjects with no atrophy/metaplasia by histology and pepsinogen I/II ratio > 4.0; 17 H. pylori-infected subjects with atrophy/metaplasia and pepsinogen I/II ratio < 2.5; and 3 subjects with atrophy/metaplasia, no evidence of active H. pylori infection, negative for anti-H. pylori immunoglobulin G (IgG) antibody testing, and no previous history of H. pylori eradication. Successful H. pylori eradication was achieved in 21 patients. The gastric microbiota was characterized using an Illumina MiSeq platform targeting 16S ribosomal DNA (rDNA). The mean follow-up duration was 57.4 months (range, 12-145 months), and median follow-up visit was 1 (range, 1-3). Relative abundance of Lactobacillales and Streptococcus was increased with atrophy/metaplasia. In H. pylori-uninfected subjects (n = 8), an increase in Proteobacteria (Enhydrobacter, Comamonadaceae, Sphingobium); a decrease in Firmicutes (Streptococcus, Veillonella), Fusobacteria (Fusobacterium), Nocardioidaceae, Rothia, and Prevotella; and a decrease in microbial diversity were observed during the follow-up (p trend < 0.05). In 10 of 21 subjects (47.6%), H. pylori eradication induced restoration of microbial diversity; however, a predominance of Acinetobacter with a decrease in microbial diversity occurred in 11 subjects (52.3%). The presence of atrophy/metaplasia at baseline and higher neutrophil infiltration in the corpus were associated with the restoration of gastric microbiota after successful eradication, whereas a higher relative abundance of Acinetobacter at baseline was associated with the predominance of Acinetobacter after H. pylori eradication (p < 0.05). To conclude, in H. pylori-uninfected stomach, relative abundance of Proteobacteria increases, relative abundance of Firmicutes and Fusobacteria decreases, and microbial diversity decreases with aging. H. pylori eradication does not always restore gastric microbiota; in some individuals, gastric colonization by Acinetobacter species occurs after anti-Helicobacter treatment.


Microbial antigen mimics activate diabetogenic CD8 T cells in NOD mice.

  • Ningwen Tai‎ et al.
  • The Journal of experimental medicine‎
  • 2016‎

Both animal model and human studies indicate that commensal bacteria may modify type 1 diabetes (T1D) development. However, the underlying mechanisms by which gut microbes could trigger or protect from diabetes are not fully understood, especially the interaction of commensal bacteria with pathogenic CD8 T cells. In this study, using islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-reactive CD8 T cell receptor NY8.3 transgenic nonobese diabetic mice, we demonstrated that MyD88 strongly modulates CD8(+) T cell-mediated T1D development via the gut microbiota. Some microbial protein peptides share significant homology with IGRP. Both the microbial peptide mimic of Fusobacteria and the bacteria directly activate IGRP-specific NY8.3 T cells and promote diabetes development. Thus, we provide evidence of molecular mimicry between microbial antigens and an islet autoantigen and a novel mechanism by which the diabetogenicity of CD8(+) T cells can be regulated by innate immunity and the gut microbiota.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: