Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 359 papers

Fusobacterium Species and Subspecies Differentially Affect the Composition and Architecture of Supra- and Subgingival Biofilms Models.

  • Thomas Thurnheer‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Fusobacteria are common obligately anaerobic Gram-negative bacteria of the oral cavity that may act as a bridge between early and late colonizing bacteria in dental plaque and have a role in oral and extra-oral infections. Fusobacterium nucleatum has a crucial role in oral biofilm structure and ecology, as revealed in experimental and clinical biofilm models. The aim of this study was to investigate the impact of various Fusobacterium species on in vitro biofilm formation and structure in three different oral biofilm models namely a supragingival, a supragingival "feeding", and a subgingival biofilm model. The standard six-species supragingival and "feeding" biofilm models employed contained Actinomyces oris, Candida albicans, Streptococcus mutans, Streptococcus oralis, Veillonella dispar, and Fusobacterium sp. The subgingival biofilm model contained 10 species (A. oris, Campylobacter rectus, F. nucleatum ssp. nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Streptococcus anginosus, S. oralis, Tannerella forsythia, Treponema denticola, and V. dispar). Six different Fusobacterium species or subspecies, respectively, were tested namely F. nucleatum ssp. fusiforme, F. nucleatum ssp. nucleatum, F. nucleatum ssp. polymorphum, F. nucleatum ssp. vincentii, F. naviforme, and F. periodonticum). Biofilms were grown anaerobically on hydroxyapatite disks in 24-well culture dishes. After 64 h, biofilms were either harvested and quantified by culture analysis or proceeded to fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy (CLSM). All Fusobacterium species tested established well in the biofilms, with CFUs ranging from 1.4E+04 (F. nucleatum ssp. fusiforme) to 5.6E+06 (F. nucleatum ssp. nucleatum). The presence of specific Fusobacterium sp./ssp. induced a significant decrease in C. albicans levels in the supragingival model and in V. dispar levels in the "feeding" supragingival model. In the subgingival model, the counts of A. oris, S. oralis, P. intermedia, P. gingivalis, and C. rectus significantly decreased in the presence of specific Fusobacterium sp./ssp. Collectively, this study showed variations in the growing capacities of different fusobacteria within biofilms, affecting the growth of surrounding species and potentially the biofilm architecture. Hence, clinical or experimental studies need to differentiate between Fusobacterium sp./ssp., as their biological properties may well vary.


Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.).

  • Maartje Ahj van Kessel‎ et al.
  • AMB Express‎
  • 2011‎

The microbes in the gastrointestinal (GI) tract are of high importance for the health of the host. In this study, Roche 454 pyrosequencing was applied to a pooled set of different 16S rRNA gene amplicons obtained from GI content of common carp (Cyprinus carpio) to make an inventory of the diversity of the microbiota in the GI tract. Compared to other studies, our culture-independent investigation reveals an impressive diversity of the microbial flora of the carp GI tract. The major group of obtained sequences belonged to the phylum Fusobacteria. Bacteroidetes, Planctomycetes and Gammaproteobacteria were other well represented groups of micro-organisms. Verrucomicrobiae, Clostridia and Bacilli (the latter two belonging to the phylum Firmicutes) had fewer representatives among the analyzed sequences. Many of these bacteria might be of high physiological relevance for carp as these groups have been implicated in vitamin production, nitrogen cycling and (cellulose) fermentation.


Placental colonization by Fusobacterium nucleatum is mediated by binding of the Fap2 lectin to placentally displayed Gal-GalNAc.

  • Lishay Parhi‎ et al.
  • Cell reports‎
  • 2022‎

While the existence of an indigenous placental microbiota remains controversial, several pathogens are known to be involved in adverse pregnancy outcomes. Fusobacterium nucleatum is an oral bacterium that is one of several bacteria associated with preterm birth. Oral fusobacteria translocate to the placenta hematogenously; however, the mechanisms localizing them to the placenta remain unclear. Here, using peanut agglutinin, we demonstrate that the level of Gal-GalNAc (Galβ1-3GalNAc; Thomsen Friedenreich antigen) found on trophoblasts facing entering maternal blood rises during gestation and is recognized by the fusobacterial Fap2 Gal-GalNAc lectin. F. nucleatum binding to human and mouse placenta correlates with Gal-GalNAc levels and is reduced upon O-glycanase treatment or with soluble Gal-GalNAc. Fap2-inactivated F. nucleatum shows reduced binding to Gal-GalNAc-displaying placental sections. In a mouse model, intravenously injected Fap2-expressing F. nucleatum, but not a Fap2 mutant, reduces mouse fetal survival by 70%.


Seasonal changes in microbial community composition in river water studied using 454-pyrosequencing.

  • Marija Kaevska‎ et al.
  • SpringerPlus‎
  • 2016‎

The aims of this study were to determine the microbial community in five rivers in the proximity of a city in the Czech Republic using 454-pyrosequencing, as well as to assess seasonal variability over the course of 1 year and to identify the factors influencing the structure of bacterial communities. Samples from five rivers around the city of Brno were obtained during four seasons and analysed using 454 pyrosequencing of the 16S rRNA gene. The core composition of bacterial communities consisted of Actinobacteria, Bacteroidetes, Proteobacteria, Firmicutes, Fusobacteria, TM7 and others. Our approach enabled us to more closely study the correlation between the abundance of different families and environmental factors. Overall, Actinobacteria negatively correlated with phosphorus, sulphate, dissolved particle and chloride levels. In contrast, Proteobacteria positively correlated with sulphate, dissolved particle, chloride, dissolved oxygen and nitrite levels. Future work should focus on the dynamics of bacterial communities present in river water and their relation to the overall stability of the water ecosystem.


Human Tumor-Infiltrating MAIT Cells Display Hallmarks of Bacterial Antigen Recognition in Colorectal Cancer.

  • Shamin Li‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

Growing evidence indicates a role for the gut microbiota in modulating anti-tumor treatment efficacy in human cancer. Here we study mucosa-associated invariant T (MAIT) cells to look for evidence of bacterial antigen recognition in human colon, lung, and kidney carcinomas. Using mass cytometry and single-cell mRNA sequencing, we identify a tumor-infiltrating MAIT cell subset expressing CD4 and Foxp3 and observe high expression of CD39 on MAIT cells from colorectal cancer (CRC) only, which we show in vitro to be expressed specifically after TCR stimulation. We further reveal that these cells are phenotypically and functionally exhausted. Sequencing data show high bacterial infiltration in CRC tumors and highlight an enriched species, Fusobacteria nucleatum, with capability to activate MAIT cells in a TCR-dependent way. Our results provide evidence of a MAIT cell response to microbial antigens in CRC and could pave the way for manipulating MAIT cells or the microbiome for cancer therapy.


Using the Gut Microbiome to Assess Stocking Efforts of the Endangered Pallid Sturgeon, Scaphirhynchus albus.

  • Sarah Gaughan‎ et al.
  • Life (Basel, Switzerland)‎
  • 2023‎

The endangered Pallid Sturgeon, Scaphirhynchus albus, has been actively managed to prevent population declines, including stocking of hatchery-raised fish. The gut microbiome plays an innate role in an organism's absorption of nutrients by increasing nutrient availability and can provide new insights for Pallid Sturgeon management. In this study, the Pallid Sturgeon's microbiome is dominated by the phyla Proteobacteria, Firmicutes, Actinobacteria and Fusobacteria. It was also determined that the gut bacterial diversity in hatchery-raised Pallid Sturgeon was not significantly different from wild Pallid Sturgeon, supporting that hatchery-raised Pallid Sturgeon are transitioning effectively to wild diets. There is also a high degree of intraspecific variation in the bacterial and eukaryotic sequences amongst individual Pallid Sturgeon microbiomes, suggesting the Pallid Sturgeon may be omnivorous. This study demonstrated that genetic markers may be used to effectively describe the dietary requirements for wild Pallid Sturgeon and provides the first genetic evidence that Pallid Sturgeons are effectively transitioning from hatchery-raised environments to the wild.


Revealing the gut bacteriome of Dendroctonus bark beetles (Curculionidae: Scolytinae): diversity, core members and co-evolutionary patterns.

  • Juan Alfredo Hernández-García‎ et al.
  • Scientific reports‎
  • 2017‎

Dendroctonus bark beetles comprise 20 taxonomically recognized species, which are one of the most destructive pine forest pests in North and Central America, and Eurasia. The aims of this study were to characterize the gut bacterial diversity, to determine the core bacteriome and to explore the ecological association between these bacteria and bark beetles. A total of five bacterial phyla were identified in the gut of 13 Dendroctonus species; Proteobacteria was the most abundant, followed by Firmicutes, Fusobacteria, Actinobacteria and Deinococcus-Thermus. The α-diversity was low as demonstrated in previous studies and significant differences in β-diversity were observed. The core bacteriome was composed of Enterobacter, Pantoea, Pseudomonas, Rahnella, Raoultella, and Serratia. The tanglegram between bacteria and bark beetles suggests that members of bacterial community are acquired from the environment, possibly from the host tree. These findings improve the knowledge about the bacterial community composition, and provide the bases to study the metabolic functions of these bacteria, as well as their interaction with these bark beetles.


Longitudinal Survey of Fecal Microbiota in Healthy Dogs Administered a Commercial Probiotic.

  • Susan Ciaravolo‎ et al.
  • Frontiers in veterinary science‎
  • 2021‎

The aim of this longitudinal microbiome study was to investigate the effects of a commercially available veterinary synbiotic product (Blackmore's® Paw DigestiCare 60™) on the fecal microbiome of healthy dogs using 16S rRNA gene microbial profiling. Fifteen healthy, privately-owned dogs participated in a 2-week trial administration of the product. Fecal samples were collected at different time points, including baseline (prior to treatment), during administration and after discontinuation of product. Large intra- and inter-individual variation was observed throughout the study, but microbiome composition at higher phylogenetic levels, alpha and beta diversity were not significantly altered after 2 weeks of probiotic administration, suggesting an absence of probiotic impact on microbial diversity. Administration of the synbiotic preparation did, however, result in transient increases in probiotic species from Enterococacceae and Streptococacceae families as well as an increase in Fusobacteria; with the fecal microbiota partially reverting to its baseline state 3-weeks after cessation of probiotic administration.


Association study of gut flora in Wilson's disease through high-throughput sequencing.

  • Hao Geng‎ et al.
  • Medicine‎
  • 2018‎

In this study, we analyzed the difference of intestinal flora polymorphisms between Wilson's disease (WD) patients and healthy people by high-throughput sequencing technology, and explored the correlation between WD and intestinal flora polymorphism.A total of 22 cases of WD patients and 22 healthy persons as control were recruited. The total DNA was extracted from the fecal specimens of all the subjects, V4 high variable region of 16S rRNA gene was amplified and sequenced by high-throughput sequencing. The sequencing results were analyzed by α diversity and β diversity. The unweighted UniFrac distance matrices were calculated and trees were built by unweighted-pair group method with arithmetic mean (UPGMA).A total of 2,548,262 sequences were obtained after the data are optimized, the average sequences in the WD group was 36,836 ± 4104 and it was 35,051 ± 3075 in the normal control group, there was no significant difference in the average sequence number between the 2 groups. OTU analysis showed that 2663 OTU were obtained in WD group, and 3271 OTU were obtained in the control group, of which 941 were common OTU. Colony diversity analysis showed that the intestinal flora of WD group and control group belonged to 5 phyla, they were Bacteroidetes, Firmicutes, Proteobacteria, Fusobacteria, and Tenericutes, respectively. In WD group, the abundance of Bacteroidetes was significantly lower than that of the control group (67.19% vs 76.75%, P < .001), and the abundance of Firmicutes (26.18% vs 19.83%, P < .001), Proteobacteria (4.31% vs 3.09%, P < .05), Fusobacteria (1.88% vs 0.04%, P < .001) were significantly higher than that of control group. Compared with the control group at the level of the genus, the abundance of Bacteroides (4.85% vs 4.6%, P < .05), Faecalibacterium (2.92% vs 2.13%, P < .05), Megamonas (0.84% vs 0.22%, P < .001), Lachnospira (0.16% vs 0.09%, P < .001) significantly increased in WD group, while the abundance of Prevotella (1.63% vs 2.48%, P < .001), Roseburia (0.75% vs 1.39%, P < .001) and Phascolarctobacterium (1.72% vs 2.45%, P < .001) significantly decreased in WD group. PCoA and UPGMA tree analysis showed that there were significant differences of gut microbial compositions between the 2 groups.The diversity and composition of intestinal flora in the WD patients were significantly lower than those in the healthy controls, and the diversity of intestinal flora may be associated with the presence of WD.


Microbiota disbiosis is associated with colorectal cancer.

  • Zhiguang Gao‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

The dysbiosis of the human intestinal microbiota is linked to sporadic colorectal carcinoma (CRC). The present study was designed to investigate the gut microbiota distribution features in CRC patients. We performed pyrosequencing based analysis of the 16S rRNA gene V3 region to investigate microbiota of the cancerous tissue and adjacent non-cancerous normal tissue in proximal and distal CRC samples. The results revealed that the microbial structures of the CRC patients and healthy individuals differed significantly. Firmicutes and Fusobacteria were over-represented whereas Proteobacteria was under-represented in CRC patients. In addition, Lactococcus and Fusobacterium exhibited a relatively higher abundance while Pseudomonas and Escherichia-Shigella was reduced in cancerous tissues compared to adjacent non-cancerous tissues. Meanwhile, the overall microbial structures of proximal and distal colon cancerous tissues were similar; but certain potential pro-oncogenic pathogens were different. These results suggested that the mucosa-associated microbiota is dynamically associated with CRC, which may provide evidences for microbiota-associated diagnostic, prognostic, preventive, and therapeutic strategies for CRC.


In vitro fecal fermentation characteristics of bamboo shoot (Phyllostachys edulis) polysaccharide.

  • Qi Li‎ et al.
  • Food chemistry: X‎
  • 2021‎

The effects of Moso bamboo (Phyllostachys edulis) shoot polysaccharide (BSP) on the human gut microbiota composition and volatile metabolite components were investigated by in vitro fermentation. After fermentation for 48 h, BSP utilization reached 40.29% and the pH of the fermentation solution decreased from 6.89 to 4.57. Moreover, the total short-chain fatty acid concentration significantly (P < 0.05) increased from 13.46 mM (0 h) to 43.20 mM (48 h). 16S rRNA analysis revealed several differences in the gut microbiota community structure of the BSP-treated and water-treated (control) cultures. In the BSP group, the abundance of Firmicutes, Actinobacteria, and Proteobacteria was significantly increased, while that of Bacteroidetes and Fusobacteria significantly decreased. Moreover, the concentrations of benzene, its substituted derivatives, and carbonyl compounds in the volatile metabolites of the BSP-treated group decreased, while that of organic acids significantly increased after 48 h of fermentation. These results demonstrate that BSP improves gastrointestinal health.


Characterization of the fecal microbiome during neonatal and early pediatric development in puppies.

  • Blake C Guard‎ et al.
  • PloS one‎
  • 2017‎

Limited information is available describing the development of the neonatal fecal microbiome in dogs. Feces from puppies were collected at 2, 21, 42, and 56 days after birth. Feces were also collected from the puppies' mothers at a single time point within 24 hours after parturition. DNA was extracted from fecal samples and 454-pyrosequencing was used to profile 16S rRNA genes. Species richness continued to increase significantly from 2 days of age until 42 days of age in puppies. Furthermore, microbial communities clustered separately from each other at 2, 21, and 42 days of age. The microbial communities belonging to dams clustered separately from that of puppies at any given time point. Major phylogenetic changes were noted at all taxonomic levels with the most profound changes being a shift from primarily Firmicutes in puppies at 2 days of age to a co-dominance of Bacteroidetes, Fusobacteria, and Firmicutes by 21 days of age. Further studies are needed to elucidate the relationship between puppy microbiota development, physiological growth, neonatal survival, and morbidity.


Patients With LR-HPV Infection Have a Distinct Vaginal Microbiota in Comparison With Healthy Controls.

  • Yunying Zhou‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2019‎

Condyloma acuminatum (CA) is a benign epithelium hyperplasia mainly caused by human papillomavirus (HPV), which is now the second most common viral sexually transmitted infection (STI) in China. In total, 90% of CA patients are caused by the low-risk HPV 6 and 11. Aside from low-risk HPV infection there are likely other factors within the local microenvironment that contribute to CA and there has been related research before. In this study, 62 vaginal specimens were analyzed using 16S rRNA gene sequencing. The diversity of the vaginal microbiota was higher and the composition was different with LR-HPV infection. While the relative abundance of dominant Firmicutes was lower, Actinobacteria, Proteobacteria, and Fusobacteria phyla were significantly higher; at the genus level Gardnerella, Bifidobacterium, Sneathia, Hydrogenophilus, Burkholderia, and Atopobium were higher. This study firstly confirmed a more accurate and comprehensive understanding of the relationship between low-risk HPV infection and vaginal microbiota, in order to provide a theoretical basis for further research on the occurrence and development of CA.


Comparative analysis of the gut microbiota of hornbill and toucan in captivity.

  • Cheng-He Sun‎ et al.
  • MicrobiologyOpen‎
  • 2019‎

Gut microbiota plays an important role in animals and are considered microbial organs. Hornbill and toucan are birds of the same ecotypes with high appreciative value. In this study, we characterized and compared the gut microbiota of toco toucan (Ramphastos toco), great hornbill (Buceros bicornis) and wreathed hornbill (Rhyticeros undulatus) using 16S rRNA high-throughput sequencing technology, and further discussed the influence of host bird genetics on its gut microbiota. We identified 10,847 operational taxonomic units (OTUs) from the hyper-variable V4-V5 region, representing 14 phyla that were dominated by the Firmicutes, Proteobacteria, Cyanobacteria, Fusobacteria, Actinobacteria, and Bacteroidetes. Alpha diversity indices showed no significant difference among the three species (p > 0.1). However, great hornbill and toco toucan shared a high number of OTUs. Principal component analysis also revealed highly similar gut microbiotas between the two distant species. Therefore, environmental factors might dominate over host genetics in shaping the gut microbiotas of hornbill and toucan. Our study would contribute in elucidating adaptation of the hornbill and toucan to environmental change.


16S rRNA-Based metagenomic analysis of microbial communities associated with wild Labroides dimidiatus from Karah Island, Terengganu, Malaysia.

  • Ashyikin Noor Ahmad Nurul‎ et al.
  • Biotechnology reports (Amsterdam, Netherlands)‎
  • 2019‎

This study was designed to evaluate the bacterial composition of the Labroides dimidiatus and its surrounding water. Fish and carriage water samples were obtained from corals of the Karah Island in Terengganu Malaysia. DNA was extracted and the bacteria communities on the skin mucus and stomach as well as water sample were classified (to family level) using the 16S rRNA-based metagenomics analysis. 1,426,740 amplicon sequence reads corresponding to 508 total operational taxonomic units were obtained from the three metagenomics libraries in this study. The Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria and Fusobacteria were the most dominant bacterial phyla in all samples. A total of 36 different classes and 132 families were identified, many of which had shared presence in all samples while others were exclusive to different sample. Thirty-three of these were identified as pathogenic zoonotic bacterial. The results obtained indicate a strong influence of host environment on the composition of its microbiota. Knowing the composition of the microbiota is the first step toward exploring proper management of this ornamental fish in captivity.


Molecular diversity of the faecal microbiota of Toy Poodles in Japan.

  • Tsutomu Omatsu‎ et al.
  • The Journal of veterinary medical science‎
  • 2018‎

The intestinal microbiota was revealed with the recent advances in molecular techniques, such as high-throughput sequencing analysis. As a result, the microbial changes are thought to influence the health of humans and animals and such changes are affected by several factors including diet, genetics, age, sex, and diseases. Similar studies are being conducted in dogs, and the knowledge of intestinal microbiota in dogs is expanding. Nonetheless, basic information on intestinal microbiota in dogs is less than that of humans. Our aim was to study toy poodles (n=21), a popular companion dog, in terms of basic characteristics of the faecal microbiota by 16S rRNA gene barcoding analysis. In the faecal microbiota, Firmicutes, Bacteroidetes, Proteobacteria, and Fusobacteria were the dominant phyla (over 93.4% of faecal microbiota) regardless of the attributes of the dogs. In family level, Enterobacteriaceae, Bacteroidaceae, and Lachnospiraceae were most prevalent. In case of a dog with protein-losing enteropathy, the diversity of faecal microbiota was different between before and after treatment. This study provides basic information for studying on faecal microbiota in toy poodles.


Oral seeding and niche-adaptation of middle ear biofilms in health.

  • Joo-Young Lee‎ et al.
  • Biofilm‎
  • 2021‎

The entrenched dogma of a sterile middle ear mucosa in health is incongruent with its periodic aeration and seeding with saliva aerosols. To test this, we sequenced 16S rRNA-V4 amplicons from otic secretions collected at the nasopharyngeal orifice of the tympanic tube and, as controls, oropharyngeal and buccal samples. The otic samples harbored a rich diversity of oral keystone genera and similar functional traits but were enriched in anaerobic genera in the Bacteroidetes (Prevotella and Alloprevotella), Fusobacteria (Fusobacterium and Leptotrichia) and Firmicutes (Veillonella) phyla. Facultative anaerobes in the Streptococcus genus were also abundant in the otic and oral samples but corresponded to distinct, and sometimes novel, cultivars, consistent with the ecological diversification of the oral migrants once in the middle ear microenvironment. Neutral community models also predicted a large contribution of oral dispersal to the otic communities and the positive selection of taxa better adapted to growth and reproduction under limited aeration. These results challenge the traditional view of a sterile middle ear in health and highlight hitherto unknown roles for oral dispersal and episodic ventilation in seeding and diversifying otic biofilms.


Comparison of the effects of four commercially available prescription diet regimens on the fecal microbiome in healthy dogs.

  • Akihiro Mori‎ et al.
  • The Journal of veterinary medical science‎
  • 2019‎

The effects of prescription diets on canine intestinal microbiota are unknown. In this study, we used next generation sequencing to investigate the impact of four commercially available prescription diet regimens on the fecal microbiome in six healthy dogs. The diet regimens used were as follows: weight-loss diet, low-fat diet, renal diet, and anallergenic diet. We found a significantly decreased proportion of phylum Actinobacteria with the weight-loss diet compared to the anallergenic diet. There were no significant differences in the proportion of phylum Bacteroidetes between the four diets. The proportion of phylum Firmicutes was significantly decreased with the weight-loss diet compared to the anallergenic diet. The proportion of phylum Fusobacteria was significantly increased with the weight-loss diet compared to the anallergenic diet. There were no significant differences in the proportion of phylum Proteobacteria after consumption of the four diets. We therefore demonstrated that commercial prescription diet influences the fecal microbiome in healthy dogs. These results might be useful when choosing a prescription diet for targeting a disease.


Gut microbial diversity in two insectivorous bats: Insights into the effect of different sampling sources.

  • Haonan Wu‎ et al.
  • MicrobiologyOpen‎
  • 2019‎

The gut microbiota is now known as a key factor in mammalian physiology and health. Our understanding of the gut microbial communities and their effects on ecology and evolution of their hosts is extremely limited in bats which represent the second largest mammalian order. In the current study, gut microbiota of three sampling sources (small intestine, large intestine, and feces) were characterized in two sympatric and insectivorous bats (Rhinolophus sinicus and Myotis altarium) by high-throughput sequencing of the V3-V4 region of the 16S rRNA gene. Combining with published studies, this work reveals that Gammaproteobacteria may be a dominant class in the whole Chiroptera and Fusobacteria is less observed in bats although it has been proven to be dominant in other mammals. Our results reveal that the sampling source influences alpha diversity of the microbial community in both studied species although no significant variations of beta diversity were observed, which support that fecal samples cannot be used as a proxy of the microbiota in other gut regions in wild animals.


Green tea polyphenols decrease weight gain, ameliorate alteration of gut microbiota, and mitigate intestinal inflammation in canines with high-fat-diet-induced obesity.

  • Yu Li‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2020‎

Green tea polyphenols (GTPs) exhibit beneficial effects towards obesity and intestinal inflammation; however, the mechanisms and association with gut microbiota are unclear. We examined the role of the gut microbiota of GTPs treatment for obesity and inflammation. Canines were fed either a normal diet or high-fat diet with low (0.48% g/kg), medium (0.96% g/kg), or high (1.92% g/kg), doses of GTPs for 18 weeks. GTPs decreased the relative abundance of Bacteroidetes and Fusobacteria and increased the relative abundance of Firmicutes as revealed by 16S rRNA gene sequencing analysis. The relative proportion of Acidaminococcus, Anaerobiospirillum, Anaerovibrio, Bacteroides, Blautia, Catenibactetium, Citrobacter, Clostridium, Collinsella, and Escherichia were significantly associated with GTPs-induced weight loss. GTPs significantly (P<.01) decreased expression levels of inflammatory cytokines, including TNF-α, IL-6, and IL-1β, and inhibited induction of the TLR4 signaling pathway compared with high-fat diet. We show that the therapeutic effects of GTPs correspond with changes in gut microbiota and intestinal inflammation, which may be related to the anti-inflammatory and anti-obesity mechanisms of GTPs.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: