Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 4 showing 61 ~ 80 papers out of 244 papers

Population based quantification of dendrites: evidence for the lack of microtubule-associate protein 2a,b in Purkinje cell spiny dendrites.

  • S Hamodeh‎ et al.
  • Neuroscience‎
  • 2010‎

The high molecular weight isoforms (a and b) of microtubule-associate protein 2 (MAP2a,b) are widely believed to be specific markers for neuronal somata and dendrites. We analyzed and quantified MAP2a,b stained dendrites of the cerebellar molecular layer using a novel approach that segmented and 3D reconstructed them, and the results have been compared with those obtained by other methods, including single-cell reconstruction and analysis of electron micrographs. Our results show that the molecular layer dendritic volume fraction is lower than in the neocortex (10% compared to neocortical 29%). The low total volume fraction of dendrites in the molecular layer is best explained by the majority of the afferents to the dendrites being from the very densely packed parallel fibers, which allows the dendritic fields of individual neurons to be smaller and more compact than in the cerebral cortex. However, the MAP2a,b dendritic volume fraction is even lower (5.2%) than the total volume fraction of dendrites in the molecular layer (10%). Analysis of the material shows that this difference between the two results is due to the unexpected finding that there were few MAP2a,b stained Purkinje cell spiny dendrites.


Translocation of a "winner" climbing fiber to the Purkinje cell dendrite and subsequent elimination of "losers" from the soma in developing cerebellum.

  • Kouichi Hashimoto‎ et al.
  • Neuron‎
  • 2009‎

Functional neural circuits are formed by eliminating early-formed redundant synapses and strengthening necessary connections during development. In newborn mouse cerebellum, each Purkinje cell (PC) is innervated by multiple climbing fibers (CFs) with similar strengths. Subsequently, a single CF is selectively strengthened by postnatal day 7 (P7). We find that this competition among multiple CFs occurs on the soma before CFs form synapses along dendrites. Notably, in most PCs, the single CF that has been functionally strengthened (the "winner" CF) undergoes translocation to dendrites while keeping its synapses on the soma. Synapses of the weaker CFs (the "loser" CFs) remain around the soma and form "pericellular nests" with synapses of the winner CFs. Then most perisomatic synapses are eliminated nonselectively by P15. Thus, our results suggest that the selective translocation of the winner CF to dendrites in each PC determines the single CF that survives subsequent synapse elimination and persistently innervates the PC.


Spatial distribution of corticotropin-releasing factor immunopositive climbing fibers in the mouse cerebellum: analysis by whole mount immunohistochemistry.

  • Kazuhiko Sawada‎ et al.
  • Brain research‎
  • 2008‎

This study examined the spatial organization of corticotropin-releasing factor (CRF) immunopositive climbing fibers in the mouse cerebellum by whole mount immunohistochemistry. A striking pattern of parasagittal stripes of CRF staining was revealed. Cryosections of whole mount CRF stained cerebellum showed that anti-CRF immunostaining is restricted to climbing fibers in the molecular layer and does not penetrate deeper into the granular layer. The array of CRF stripes was reminiscent of zebrin II immunopositive Purkinje cell stripes in the anterior vermis and the hemispherical lobules. However, a direct comparison of the two distributions showed that the CRF-defined parasagittal stripes and transverse zones in the posterior vermis are different from those defined by the expression of zebrin II: in particular, CRF immunostaining revealed a transverse boundary between lobules VIb and VII and the presence of four CRF-immunopositive climbing fiber stripes in lobule VIII. Furthermore, an array of CRF stripes was seen in lobule X, the flocculus and the paraflocculus, despite uniform zebrin II expression in these areas. In these cases some, but not all, CRF-immunopositive stripes shared boundaries with Purkinje cell stripes that were visualized by the expression of heat shock protein 25. The results reveal a reproducible pattern of CRF-immunopositive climbing fiber innervation in the mouse cerebellum that bears a complex relationship to the stripes delineated by Purkinje cell compartmentation antigens.


Visualization of IP(3) dynamics reveals a novel AMPA receptor-triggered IP(3) production pathway mediated by voltage-dependent Ca(2+) influx in Purkinje cells.

  • Y Okubo‎ et al.
  • Neuron‎
  • 2001‎

IP(3) signaling in Purkinje cells is involved in the regulation of cell functions including LTD. We have used a GFP-tagged pleckstrin homology domain to visualize IP(3) dynamics in Purkinje cells. Surprisingly, IP(3) production was observed in response not only to mGluR activation, but also to AMPA receptor activation in Purkinje cells in culture. AMPA-induced IP(3) production was mediated by depolarization-induced Ca(2+) influx because it was mimicked by depolarization and was blocked by inhibition of the P-type Ca(2+) channel. Furthermore, trains of complex spikes, elicited by climbing fiber stimulation (1 Hz), induced IP(3) production in Purkinje cells in cerebellar slices. These results revealed a novel IP(3) signaling pathway in Purkinje cells that can be elicited by synaptic inputs from climbing fibers.


In vivo analysis of the spontaneous firing of cerebellar Purkinje cells in awake transgenic mice that model spinocerebellar ataxia type 2.

  • Polina A Egorova‎ et al.
  • Cell calcium‎
  • 2021‎

Cerebellar Purkinje cells (PCs) fire spontaneously in a tonic mode, although the precision of this pacemaking activity is disturbed in many abnormal conditions involving cerebellar atrophy, such as many spinocerebellar ataxias (SCAs). In our previous studies we used the single-unit extracellular recording method to analyze spontaneous PC firing in vivo in the anesthetized SCA2-58Q transgenic mice. We realized that PCs from aging SCA2-58Q mice fire much less regularly compared to PCs from their wild type (WT) littermates and this abnormal activity can be reversed with an intraperitoneal (i. p.) injection of SK channel-positive modulator chlorzoxazone (CHZ). Here we used the same single-unit extracellular recording method to analyze the spontaneous firing in vivo in awake SCA2-58Q transgenic mice. For this purpose, we used the Mobile HomeCage (Neurotar, Finland) floating platform to immobilize the experimental animal's head during the recording sessions. We discovered that generally PCs from awake animals fired much more frequently and much less regularly than previously observed PCs from anesthetized animals. In vivo recordings from awake SCA2/WT mice revealed that complex spikes, which are generated by PCs in reply to the excitation coming by climbing fibers, as well as simple spikes, were much less frequent in SCA2 mice compared to their WT littermates. To test the effect of the SK channel positive modulation on the PCs firing activity in awake SCA2 mice and also the effect on their motor coordination, we started the CHZ trial in these mice. We discovered that the long-term i. p. injections of CHZ did not affect the spike generation in SCA2-58Q mice, however, they did recover the precision of this spontaneous pacemaking activity. Furthermore, we also showed that treatment with CHZ alleviated the age-dependent motor impairment in SCA2-58Q mice. We propose that the lack of precision in PC spike generation might be a key cause for the progression of ataxic symptoms in different SCAs and that the activation of calcium-activated potassium channels, including SK channels, can be used as a potential way to treat SCAs on the physiological level of the disease.


High frequency burst firing of granule cells ensures transmission at the parallel fiber to purkinje cell synapse at the cost of temporal coding.

  • Boeke J van Beugen‎ et al.
  • Frontiers in neural circuits‎
  • 2013‎

Cerebellar granule cells (GrCs) convey information from mossy fibers (MFs) to Purkinje cells (PCs) via their parallel fibers (PFs). MF to GrC signaling allows transmission of frequencies up to 1 kHz and GrCs themselves can also fire bursts of action potentials with instantaneous frequencies up to 1 kHz. So far, in the scientific literature no evidence has been shown that these high-frequency bursts also exist in awake, behaving animals. More so, it remains to be shown whether such high-frequency bursts can transmit temporally coded information from MFs to PCs and/or whether these patterns of activity contribute to the spatiotemporal filtering properties of the GrC layer. Here, we show that, upon sensory stimulation in both un-anesthetized rabbits and mice, GrCs can show bursts that consist of tens of spikes at instantaneous frequencies over 800 Hz. In vitro recordings from individual GrC-PC pairs following high-frequency stimulation revealed an overall low initial release probability of ~0.17. Nevertheless, high-frequency burst activity induced a short-lived facilitation to ensure signaling within the first few spikes, which was rapidly followed by a reduction in transmitter release. The facilitation rate among individual GrC-PC pairs was heterogeneously distributed and could be classified as either "reluctant" or "responsive" according to their release characteristics. Despite the variety of efficacy at individual connections, grouped activity in GrCs resulted in a linear relationship between PC response and PF burst duration at frequencies up to 300 Hz allowing rate coding to persist at the network level. Together, these findings support the hypothesis that the cerebellar granular layer acts as a spatiotemporal filter between MF input and PC output (D'Angelo and De Zeeuw, 2009).


Aligned neurite bundles of granule cells regulate orientation of Purkinje cell dendrites by perpendicular contact guidance in two-dimensional and three-dimensional mouse cerebellar cultures.

  • Isao Nagata‎ et al.
  • The Journal of comparative neurology‎
  • 2006‎

To identify structures that determine the 90 degree orientation of thin espalier dendritic trees of Purkinje cells with respect to parallel fibers (axonal neurite bundles of granule cells) in the cerebellar cortex, we designed five types of two-dimensional and three-dimensional cell and tissue cultures of cerebella from postnatal mice and analyzed the orientation of Purkinje cell dendrites with respect to neurite bundles and astrocyte fibers by immunofluorescence double or triple staining. We cultured dissociated cerebellar cells on micropatterned substrates and preformed neurite bundles of a microexplant culture two-dimensionally and in matrix gels three-dimensionally. Dendrites, but not axons, of Purkinje cells extended toward the neurites of granule cells and oriented at right angles two-dimensionally to aligned neurite bundles in the three cultures. In a more organized explant proper of the microexplant culture, Purkinje cell dendrites extended toward thin aligned neurite bundles not only consistently at right angles but also two-dimensionally. However, in the "organotypic microexplant culture," in which three-dimensionally aligned thick neurite bundles mimicking parallel fibers were produced, Purkinje cell dendrites often oriented perpendicular to the thick bundles three-dimensionally. Astrocytes were abundant in all cultures, and there was no definite correlation between the presence of and orientation to Purkinje cell dendrites, although their fibers were frequently associated in parallel with dendrites in the organotypic microexplant culture. Therefore, Purkinje cells may grow their dendrites to the newly produced neurite bundles of parallel fibers in the cerebellar cortex and be oriented at right angles three-dimensionally mainly via "perpendicular contact guidance."


Neuron-derived FGF9 is essential for scaffold formation of Bergmann radial fibers and migration of granule neurons in the cerebellum.

  • Yongshun Lin‎ et al.
  • Developmental biology‎
  • 2009‎

Although fibroblast growth factor 9 (FGF9) is widely expressed in the central nervous system (CNS), the function of FGF9 in neural development remains undefined. To address this question, we deleted the Fgf9 gene specifically in the neural tube and demonstrated that FGF9 plays a key role in the postnatal migration of cerebellar granule neurons. Fgf9-null mice showed severe ataxia associated with disrupted Bergmann fiber scaffold formation, impaired granule neuron migration, and upset Purkinje cell maturation. Ex vivo cultured wildtype or Fgf9-null glia displayed a stellate morphology. Coculture with wildtype neurons, but not Fgf9-deficient neurons, or treating with FGF1 or FGF9 induced the cells to adopt a radial glial morphology. In situ hybridization showed that Fgf9 was expressed in neurons and immunostaining revealed that FGF9 was broadly distributed in both neurons and Bergmann glial radial fibers. Genetic analyses revealed that the FGF9 activities in cerebellar development are primarily transduced by FGF receptors 1 and 2. Furthermore, inhibition of the MAP kinase pathway, but not the PI3K/AKT pathway, abrogated the FGF activity to induce glial morphological changes, suggesting that the activity is mediated by the MAP kinase pathway. This work demonstrates that granule neurons secrete FGF9 to control formation of the Bergmann fiber scaffold, which in turn, guides their own inward migration and maturation of Purkinje cells.


W246G Mutant ELOVL4 Impairs Synaptic Plasticity in Parallel and Climbing Fibers and Causes Motor Defects in a Rat Model of SCA34.

  • Raghavendra Y Nagaraja‎ et al.
  • Molecular neurobiology‎
  • 2021‎

Spinocerebellar ataxia (SCA) is a neurodegenerative disorder characterized by ataxia and cerebellar atrophy. A number of different mutations gives rise to different types of SCA with characteristic ages of onset, symptomatology, and rates of progression. SCA type 34 (SCA34) is caused by mutations in ELOVL4 (ELOngation of Very Long-chain fatty acids 4), a fatty acid elongase essential for biosynthesis of Very Long Chain Saturated and Polyunsaturated Fatty Acids (VLC-SFA and VLC-PUFA, resp., ≥28 carbons), which have important functions in the brain, skin, retina, Meibomian glands, testes, and sperm. We generated a rat model of SCA34 by knock-in of the SCA34-causing 736T>G (p.W246G) ELOVL4 mutation. Rats carrying the mutation developed impaired motor deficits by 2 months of age. To understand the mechanism of these motor deficits, we performed electrophysiological studies using cerebellar slices from rats homozygous for W246G mutant ELOVL4 and found marked reduction of long-term potentiation at parallel fiber synapses and long-term depression at climbing fiber synapses onto Purkinje cells. Neuroanatomical analysis of the cerebellum showed normal cytoarchitectural organization with no evidence of degeneration out to 6 months of age. These results point to ELOVL4 as essential for motor function and cerebellar synaptic plasticity. The results further suggest that ataxia in SCA34 patients may arise from a primary impairment of synaptic plasticity and cerebellar network desynchronization before onset of neurodegeneration and progression of the disease at a later age.


Postnatal loss of P/Q-type channels confined to rhombic-lip-derived neurons alters synaptic transmission at the parallel fiber to purkinje cell synapse and replicates genomic Cacna1a mutation phenotype of ataxia and seizures in mice.

  • Takashi Maejima‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2013‎

Ataxia, episodic dyskinesia, and thalamocortical seizures are associated with an inherited loss of P/Q-type voltage-gated Ca(2+) channel function. P/Q-type channels are widely expressed throughout the neuraxis, obscuring identification of the critical networks underlying these complex neurological disorders. We showed recently that the conditional postnatal loss of P/Q-type channels in cerebellar Purkinje cells (PCs) in mice (purky) leads to these aberrant phenotypes, suggesting that intrinsic alteration in PC output is a sufficient pathogenic factor for disease initiation. The question arises whether P/Q-type channel deletion confined to a single upstream cerebellar synapse might induce the pathophysiological abnormality of genomically inherited P/Q-type channel disorders. PCs integrate two excitatory inputs, climbing fibers from inferior olive and parallel fibers (PFs) from granule cells (GCs) that receive mossy fiber (MF) input derived from precerebellar nuclei. In this study, we introduce a new mouse model with a selective knock-out of P/Q-type channels in rhombic-lip-derived neurons including the PF and MF pathways (quirky). We found that in quirky mice, PF-PC synaptic transmission is reduced during low-frequency stimulation. Using focal light stimulation of GCs that express optogenetic light-sensitive channels, channelrhodopsin-2, we found that modulation of PC firing via GC input is reduced in quirky mice. Phenotypic analysis revealed that quirky mice display ataxia, dyskinesia, and absence epilepsy. These results suggest that developmental alteration of patterned input confined to only one of the main afferent cerebellar excitatory synaptic pathways has a significant role in generating the neurological phenotype associated with the global genomic loss of P/Q-type channel function.


Investigating cardiac stimulation limits of MRI gradient coils using electromagnetic and electrophysiological simulations in human and canine body models.

  • Valerie Klein‎ et al.
  • Magnetic resonance in medicine‎
  • 2021‎

Cardiac stimulation (CS) limits to gradient coil switching speed are difficult to measure in humans; instead, current regulatory guidelines (IEC 60601-2-33) are based on animal experiments and electric field-to-dB/dt conversion factors computed for a simple, homogeneous body model. We propose improvement to this methodology by using more detailed CS modeling based on realistic body models and electrophysiological models of excitable cardiac fibers.


A novel transgenic Cre allele to label mouse cardiac conduction system.

  • Peter C Kahr‎ et al.
  • Developmental biology‎
  • 2021‎

The cardiac conduction system is a network of heterogeneous cell population that initiates and propagates electric excitations in the myocardium. Purkinje fibers, a network of specialized myocardial cells, comprise the distal end of the conduction system in the ventricles. The developmental origins of Purkinje fibers and their roles during cardiac physiology and arrhythmia have been reported. However, it is not clear if they play a role during ischemic injury and heart regeneration. Here we introduce a novel tamoxifen-inducible Cre allele that specifically labels a broad range of components in the cardiac conduction system while excludes other cardiac cell types and vital organs. Using this new allele, we investigated the cellular and molecular response of Purkinje fibers to myocardial injury. In a neonatal mouse myocardial infarction model, we observed significant increase in Purkinje cell number in regenerating myocardium. RNA-Seq analysis using laser-captured Purkinje fibers showed a unique transcriptomic response to myocardial infarction. Our finds suggest a novel role of cardiac Purkinje fibers in heart injury.


Corticotropin-releasing factor in cerebellar afferent systems: a combined immunohistochemistry and retrograde transport study.

  • S Cummings‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 1988‎

The flocculus and paraflocculus of cat and sheep cerebellum were studied with immunohistochemical methods, using antisera to corticotropin-releasing factor (CRF). CRF immunoreactivity was present within 3 populations of varicose nerve fibers. One population of CRF-immunoreactive (CRF-IR) fibers appeared to appose Purkinje cell somata and to follow their dendrites into the molecular layer. This arrangement suggested they were climbing fibers. A second group of CRF-IR profiles reminiscent of mossy fibers was widely distributed throughout the granule cell layer. A third population of CRF-IR fibers was present as a beaded plexus lying parallel to the pial surface, above and subadjacent to the Purkinje cell layer. The fibers of this plexus extended into the Purkinje cell layer and surrounded these somata. The source of some of the CRF-IR fibers within the flocculus and paraflocculus was determined by a retrograde axonal transport study utilizing the fluorescent tracer Fast blue (FB) in combination with the immunohistochemical localization of CRF. It was determined that CRF-IR perikarya within the inferior olivary nucleus gave rise to a population of climbing fibers within those lobules. Furthermore, all divisions of the inferior olive were found to contain CRF-IR somata. This latter finding suggests the potential for CRF-IR climbing fiber projections from the inferior olive to other regions of the cerebellar cortex. The existence of CRF-IR mossy fibers and fibers within the ganglionic plexus suggests the possibility of CRF-IR afferent projections from other regions of the brain stem to the flocculus and paraflocculus.


Climbing fiber projections in relation to zebrin stripes in the ventral uvula in pigeons.

  • Janelle M P Pakan‎ et al.
  • The Journal of comparative neurology‎
  • 2014‎

The cerebellum consists of sagittally oriented zones that are delineated by afferent input, Purkinje cell response properties, and the expression of molecular markers such as zebrin II (ZII). ZII is heterogeneously expressed in Purkinje cells such that there are parasagittal stripes of high expression (ZII+) interdigitated with stripes of little or no expression (ZII-). In pigeons, folium IXcd consists of seven pairs of ZII+/- stripes denoted P1+/- (medial) to P7+/- (lateral). In the present study we examined the climbing fiber input to the medial half of folium IXcd, the ventral uvula, which spans the medial two stripe pairs (P1+/- to P2+/-). Purkinje cells in the ventral uvula respond to patterns of optic flow resulting from self-motion through the environment along translational axes and their climbing fibers originate in the lateral half of the medial column in the inferior olive (mcIO). Using anterograde injections into this region of the mcIO, we found the following topographic relationship: climbing fibers from the caudal lateral mcIO were located in P1+ and medial P1- ZII stripes; climbing fibers from the rostral lateral mcIO were located in lateral P2+ and P2- ZII stripes, and climbing fibers from the middle lateral mcIO were located in lateral P1- and medial P2+ ZII stripes. These data complement our previous findings showing a topographic relationship between Purkinje cell responses to optic flow visual stimuli and ZII stripes. Taken together, we suggest that a ZII+/- stripe pair may represent a functional unit in the pigeon vestibulocerebellum.


Deletion of the α subunit of the heterotrimeric Go protein impairs cerebellar cortical development in mice.

  • Hye Lim Cha‎ et al.
  • Molecular brain‎
  • 2019‎

Go is a member of the pertussis toxin-sensitive Gi/o family. Despite its abundance in the central nervous system, the precise role of Go remains largely unknown compared to other G proteins. In the present study, we explored the functions of Go in the developing cerebellar cortex by deleting its gene, Gnao. We performed a histological analysis with cerebellar sections of adult mice by cresyl violet- and immunostaining. Global deletion of Gnao induced cerebellar hypoplasia, reduced arborization of Purkinje cell dendrites, and atrophied Purkinje cell dendritic spines and the terminal boutons of climbing fibers from the inferior olivary nucleus. These results indicate that Go-mediated signaling pathway regulates maturation of presynaptic parallel fibers from granule cells and climbing fibers during the cerebellar cortical development.


Alcohol exposure decreases CREB binding protein expression and histone acetylation in the developing cerebellum.

  • Weixiang Guo‎ et al.
  • PloS one‎
  • 2011‎

Fetal alcohol exposure affects 1 in 100 children making it the leading cause of mental retardation in the US. It has long been known that alcohol affects cerebellum development and function. However, the underlying molecular mechanism is unclear.


Morphological analysis of the cerebellum and its efferent system in a basal actinopterygian fish, Polypterus senegalus.

  • Takanori Ikenaga‎ et al.
  • The Journal of comparative neurology‎
  • 2022‎

Although all vertebrate cerebella contain granule cells, Purkinje cells, and efferent neurons, the cellular arrangement and neural circuitry are highly diverse. In amniotes, cerebellar efferent neurons form clusters, deep cerebellar nuclei, lie deep in the cerebellum, and receive synaptic inputs from Purkinje cells but not granule cells. However, in the cerebellum of teleosts, the efferent neurons, called eurydendroid cells, lie near the cell bodies of Purkinje cells and receive inputs both from axons of Purkinje cells and granule cell parallel fibers. It is largely unknown how the cerebellar structure evolved in ray-finned fish (actinopterygians). To address this issue, we analyzed the cerebellum of a bichir Polypterus senegalus, one of the most basal actinopterygians. We found that the cell bodies of Purkinje cells are not aligned in a layer; incoming climbing fibers terminate mainly on the basal portion of Purkinje cells, revealing that the Polypterus cerebellum has unique features among vertebrate cerebella. Retrograde labeling and marker analyses of the efferent neurons revealed that their cell bodies lie in restricted granular areas but not as deep cerebellar nuclei in the cerebellar white matter. The efferent neurons have long dendrites like eurydendroid cells, although they do not reach the molecular layer. Our findings suggest that the efferent system of the bichir cerebellum has intermediate features between teleosts and amniote vertebrates, and provides a model to understand the basis generating diversity in actinopterygian cerebella.


Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism.

  • Claire Piochon‎ et al.
  • Nature communications‎
  • 2014‎

A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism.


Development of axon-target specificity of ponto-cerebellar afferents.

  • Anna Kalinovsky‎ et al.
  • PLoS biology‎
  • 2011‎

The function of neuronal networks relies on selective assembly of synaptic connections during development. We examined how synaptic specificity emerges in the pontocerebellar projection. Analysis of axon-target interactions with correlated light-electron microscopy revealed that developing pontine mossy fibers elaborate extensive cell-cell contacts and synaptic connections with Purkinje cells, an inappropriate target. Subsequently, mossy fiber-Purkinje cell connections are eliminated resulting in granule cell-specific mossy fiber connectivity as observed in mature cerebellar circuits. Formation of mossy fiber-Purkinje cell contacts is negatively regulated by Purkinje cell-derived BMP4. BMP4 limits mossy fiber growth in vitro and Purkinje cell-specific ablation of BMP4 in mice results in exuberant mossy fiber-Purkinje cell interactions. These findings demonstrate that synaptic specificity in the pontocerebellar projection is achieved through a stepwise mechanism that entails transient innervation of Purkinje cells, followed by synapse elimination. Moreover, this work establishes BMP4 as a retrograde signal that regulates the axon-target interactions during development.


Graded Control of Climbing-Fiber-Mediated Plasticity and Learning by Inhibition in the Cerebellum.

  • Matthew J M Rowan‎ et al.
  • Neuron‎
  • 2018‎

Purkinje cell dendrites convert excitatory climbing fiber input into signals that instruct plasticity and motor learning. Modulation of instructive signaling may increase the range in which learning is encoded, yet the mechanisms that allow for this are poorly understood. We found that optogenetic activation of molecular layer interneurons (MLIs) that inhibit Purkinje cells suppressed climbing-fiber-evoked dendritic Ca2+ spiking. Inhibitory suppression of Ca2+ spiking depended on the level of MLI activation and influenced the induction of associative synaptic plasticity, converting climbing-fiber-mediated potentiation of parallel fiber-evoked responses into depression. In awake mice, optogenetic activation of floccular climbing fibers in association with head rotation produced an adaptive increase in the vestibulo-ocular reflex (VOR). However, when climbing fibers were co-activated with MLIs, adaptation occurred in the opposite direction, decreasing the VOR. Thus, MLIs can direct a continuous spectrum of plasticity and learning through their influence on Purkinje cell dendritic Ca2+ signaling.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: