Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 244 papers

Climbing fibers induce microRNA transcription in cerebellar Purkinje cells.

  • N H Barmack‎ et al.
  • Neuroscience‎
  • 2010‎

The coordinated expression of as many as 100 proteins may be required to sustain simple changes in synaptic transmission. While each protein may be regulated separately, the translation of multiple proteins could be regulated by microRNAs. MicroRNAs are short non-coding RNAs that translationally repress cognate sequences in targeted mRNAs. If these targeted sequences are shared across several genes, then a single microRNA could, effectively regulate the activity of several genes in parallel. Here we investigate whether microRNA transcription is influenced by naturally evoked synaptic activity at the climbing fiber-Purkinje cell synapse in the mouse cerebellar flocculus. Mice received 24 h of binocular horizontal optokinetic stimulation (HOKS) evoking sustained increases in climbing fiber activity to Purkinje cells in one flocculus and decreases to Purkinje cells in the other. Increased climbing fiber activity increased transcription of 12 microRNAs in the flocculus. The transcription of one of these microRNAs, miR335, was proportional to duration of stimulation, increasing 18-fold after 24 h of HOKS. We localized miR335 transcripts to Purkinje cells using hybridization histochemistry. Transcripts of miR335 decayed to baseline within 3 h after HOKS was stopped. We identified mRNA targets for miR335 using multiple screens: sequence analysis, microinjection of miR335 inhibitors and identification of mRNAs whose transcription decreased during HOKS. Two genes, calbindin and 14-3-3-θ passed these screens. Our data suggest that microRNA transcription could provide an important synaptic or homeostatic mechanism for the regulation of proteins that contribute to Purkinje cell plasticity.


Membrane currents, contractions, and aftercontractions in cardiac Purkinje fibers.

  • S L Lipsius‎ et al.
  • The American journal of physiology‎
  • 1982‎

We examined relationships between isometric tension and membrane currents in sheep Purkinje fibers voltage clamped by the two-microelectrode method. Oscillatory restitution of contractility was accompanied by a small oscillation in membrane current and by an aftercontraction. The membrane current oscillation resembled the transient inward current (TI) others have reported in the presence of strophanthidin. Twitches produced by voltage clamp depolarizations did not correlate with net outward current in normal solution, but when the early outward current was blocked by 0.5 mM 4-aminopyridine, the residual outward current did correlate with twitches elicited by strong depolarizing clamps, particularly in solutions containing higher than normal calcium concentrations. The results illustrate important similarities and differences between membrane current behavior in sheep Purkinje fibers and behavior others have reported in calf fibers. Correlations between restitution, aftercontractions, and TI's, and between twitch tension and a component of outward current, may arise because of calcium regulation of membrane conductance, electrogenic Na-Ca exchange, or a combination of these and other mechanisms.


Elimination of Purkinje Fibers by Electroporation Reduces Ventricular Fibrillation Vulnerability.

  • Christopher Livia‎ et al.
  • Journal of the American Heart Association‎
  • 2018‎

Background The Purkinje network appears to play a pivotal role in the triggering as well as maintenance of ventricular fibrillation. Irreversible electroporation ( IRE ) using direct current has shown promise as a nonthermal ablation modality in the heart, but its ability to target and ablate the Purkinje tissue is undefined. Our aim was to investigate the potential for selective ablation of Purkinje/fascicular fibers using IRE . Methods and Results In an ex vivo Langendorff model of canine heart (n=8), direct current was delivered in a unipolar manner at various dosages from 750 to 2500 V, in 10 pulses with a 90-μs duration at a frequency of 1 Hz. The window of ventricular fibrillation vulnerability was assessed before and after delivery of electroporation energy using a shock on T-wave method. IRE consistently eradicated all Purkinje potentials at voltages between 750 and 2500 V (minimum field strength of 250-833 V/cm). The ventricular electrogram amplitude was only minimally reduced by ablation: 0.6±2.3 mV ( P=0.03). In 4 hearts after IRE delivery, ventricular fibrillation could not be reinduced. At baseline, the lower limit of vulnerability to ventricular fibrillation was 1.8±0.4 J, and the upper limit of vulnerability was 19.5±3.0 J. The window of vulnerability was 17.8±2.9 J. Delivery of electroporation energy significantly reduced the window of vulnerability to 5.7±2.9 J ( P=0.0003), with a postablation lower limit of vulnerability=7.3±2.63 J, and the upper limit of vulnerability=18.8±5.2 J. Conclusions Our study highlights that Purkinje tissue can be ablated with IRE without any evidence of underlying myocardial damage.


Developmental Rewiring between Cerebellar Climbing Fibers and Purkinje Cells Begins with Positive Feedback Synapse Addition.

  • Alyssa Michelle Wilson‎ et al.
  • Cell reports‎
  • 2019‎

During postnatal development, cerebellar climbing fibers alter their innervation strengths onto supernumerary Purkinje cell targets, generating a one-to-few connectivity pattern in adulthood. To get insight about the processes responsible for this remapping, we reconstructed serial electron microscopy datasets from mice during the first postnatal week. Between days 3 and 7, individual climbing fibers selectively add many synapses onto a subset of Purkinje targets in a positive-feedback manner, without pruning synapses from other targets. Active zone sizes of synapses associated with powerful versus weak inputs are indistinguishable. Changes in synapse number are thus the predominant form of early developmental plasticity. Finally, the numbers of climbing fibers and Purkinje cells in a local region nearly match. Initial over-innervation of Purkinje cells by climbing fibers is therefore economical: the number of axons entering a region is enough to assure that each ultimately retains a postsynaptic target and that none branched there in vain.


Purkinje fibers of the avian heart express a myogenic transcription factor program distinct from cardiac and skeletal muscle.

  • K Takebayashi-Suzuki‎ et al.
  • Developmental biology‎
  • 2001‎

A rhythmic heart beat is coordinated by conduction of pacemaking impulses through the cardiac conduction system. Cells of the conduction system, including Purkinje fibers, terminally differentiate from a subset of cardiac muscle cells that respond to signals from endocardial and coronary arterial cells. A vessel-associated paracrine factor, endothelin, can induce embryonic heart muscle cells to differentiate into Purkinje fibers both in vivo and in vitro. During this phenotypic conversion, the conduction cells down-regulate genes characteristic of cardiac muscle and up-regulate subsets of genes typical of both skeletal muscle and neuronal cells. In the present study, we examined the expression of myogenic transcription factors associated with the switch of the gene expression program during terminal differentiation of heart muscle cells into Purkinje fibers. In situ hybridization analyses and immunohistochemistry of embryonic and adult hearts revealed that Purkinje fibers up-regulate skeletal and atrial muscle myosin heavy chains, connexin-42, and neurofilament protein. Concurrently, a cardiac muscle-specific myofibrillar protein, myosin-binding protein-C (cMyBP-C), is down-regulated. During this change in transcription, however, Purkinje fibers continue to express cardiac muscle transcription factors, such as Nkx2.5, GATA4, and MEF2C. Importantly, significantly higher levels of Nkx2.5 and GATA4 mRNAs were detected in Purkinje fibers as compared to ordinary heart muscle cells. No detectable difference was observed in MEF2C expression. In culture, endothelin-induced Purkinje fibers from embryonic cardiac muscle cells dramatically down-regulated cMyBP-C transcription, whereas expression of Nkx2.5 and GATA4 persisted. In addition, myoD, a skeletal muscle transcription factor, was up-regulated in endothelin-induced Purkinje cells, while Myf5 and MRF4 transcripts were undetectable in these cells. These results show that during and after conversion from heart muscle cells, Purkinje fibers express a unique myogenic transcription factor program. The mechanism underlying down-regulation of cardiac muscle genes and up-regulation of skeletal muscle genes during conduction cell differentiation may be independent from the transcriptional control seen in ordinary cardiac and skeletal muscle cells.


In vivo detection of reduced Purkinje cell fibers with diffusion MRI tractography in children with autistic spectrum disorders.

  • Jeong-Won Jeong‎ et al.
  • Frontiers in human neuroscience‎
  • 2014‎

Postmortem neuropathology studies report reduced number and size of Purkinje cells (PC) in a majority of cerebellar specimens from persons diagnosed with autism spectrum disorders (ASD). We used diffusion weighted MRI tractography to investigate whether structural changes associated with reduced number and size of PC, could be detected in vivo by measuring streamlines connecting the posterior-lateral region of the cerebellar cortex to the dentate nucleus using an independent component analysis with a ball and stick model. Seed regions were identified in the cerebellar cortex, and streamlines were identified to two sorting regions, the dorsal dentate nucleus (DDN) and the ventral dentate nucleus (VDN), and probability of connection and measures of directional coherence for these streamlines were calculated. Tractography was performed in 14 typically developing children (TD) and 15 children with diagnoses of ASD. Decreased numbers of streamlines were found in the children with ASD in the pathway connecting cerebellar cortex to the right VDN (p-value = 0.015). Reduced fractional anisotropy (FA) values were observed in pathways connecting the cerebellar cortex to the right DDN (p-value = 0.008), the right VDN (p-value = 0.010) and left VDN (p-value = 0.020) in children with ASD compared to the TD group. In an analysis of single subjects, reduced FA in the pathway connecting cerebellar cortex to the right VDN was found in 73% of the children in the ASD group using a threshold of 3 standard errors of the TD group. The detection of diffusion changes in cerebellum may provide an in vivo biomarker of Purkinje cell pathology in children with ASD.


3D magnetization transfer (MT) for the visualization of cardiac free-running Purkinje fibers: an ex vivo proof of concept.

  • Julie Magat‎ et al.
  • Magma (New York, N.Y.)‎
  • 2021‎

We investigate the possibility to exploit high-field MRI to acquire 3D images of Purkinje network which plays a crucial role in cardiac function. Since Purkinje fibers (PF) have a distinct cellular structure and are surrounded by connective tissue, we investigated conventional contrast mechanisms along with the magnetization transfer (MT) imaging technique to improve image contrast between ventricular structures of differing macromolecular content.


Contribution of the neural cell recognition molecule NB-3 to synapse formation between parallel fibers and Purkinje cells in mouse.

  • Kunie Sakurai‎ et al.
  • Developmental neurobiology‎
  • 2009‎

The neural cell recognition molecule NB-3, also referred to as contactin-6, is expressed prominently in the developing nervous system after birth and its deficiency has been shown to cause impairment in motor coordination. Here, we investigated the contribution of NB-3 to cerebellar development, focusing on lobule 3 where NB-3 was expressed in granule cells but not in Purkinje cells. In the developing molecular layer, the neural cell recognition molecules TAG-1, L1, and NB-3 formed distinct expression zones from the external granule cell layer to the internal granule cell layer (IGL), respectively. The NB-3-immunoreactive zone did not overlap with TAG-1-immunoreactive zone. By contrast, the L1-immunoreactive zone overlapped with both the TAG-1- and NB-3-immunoreactive zones. NB-3-positive puncta overlapped with vesicular glutamate transporter 1, a presynaptic marker and were apposed close to metabotropic glutamate receptor 1A, a postsynaptic marker, indicating that NB-3 is localized presynaptically at glutamatergic synapses between parallel fibers and Purkinje cells. In NB-3 knockout mice, L1 immunoreactive signals were increased in the IGL at postnatal day (P) 5, suggesting the increase in the number of immature granule cells of the IGL. In addition, the density of parallel fiber synaptic terminals was reduced in NB-3 knockout mice relative to wild-type mice at P5 to P10. In parallel with these findings, caspase-dependent cell death was significantly increased in the NB- 3-deficient cerebellum at P15. Collectively, our results indicate that NB-3 deficiency affects synapse formation during postnatal cerebellar development.


Electrophysiological mechanisms of vandetanib-induced cardiotoxicity: Comparison of action potentials in rabbit Purkinje fibers and pluripotent stem cell-derived cardiomyocytes.

  • Hyang-Ae Lee‎ et al.
  • PloS one‎
  • 2018‎

Vandetanib, a multi-kinase inhibitor used for the treatment of various cancers, has been reported to induce several adverse cardiac effects. However, the underlying mechanisms of vandetanib-induced cardiotoxicity are unclear. This study aimed to investigate the mechanism of vandetanib-induced cardiotoxicity using intracellular electrophysiological recordings on human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), rabbit Purkinje fibers, and HEK293 cells transiently expressing human ether-a-go-go-related gene (hERG; the rapidly activating delayed rectifier K+ channel, IKr), KCNQ1/KCNE1 (the slowly activating delayed rectifier K+ current, IKs), KCNJ2 (the inwardly rectifying K+ current, IK1) or SCN5A (the inward Na+ current, INa). Purkinje fiber assays and ion channel studies showed that vandetanib at concentrations of 1 and 3 μM inhibited the hERG currents and prolonged the action potential duration. Alanine scanning and in silico hERG docking studies demonstrated that Y652 and F656 in the hERG S6 domain play critical roles in vandetanib binding. In hiPSC-CMs, vandetanib markedly reduced the maximum rate of depolarization during the AP upstroke. Ion channel studies revealed that hiPSC-CMs were more sensitive to inhibition of the INa by vandetanib than in a heterogeneously expressed HEK293 cell model, consistent with the changes in the AP parameters of hiPSC-CMs. The subclasses of Class I antiarrhythmic drugs inhibited INa currents in a dose-dependent manner in hiPSC-CMs and SCN5A-encoded HEK293 cells. The inhibitory potency of vandetanib for INa was much higher in hiPSC-CMs (IC50: 2.72 μM) than in HEK293 cells (IC50: 36.63 μM). These data suggest that AP and INa assays using hiPSC-CMs are useful electrophysiological models for prediction of drug-induced cardiotoxicity.


Regulatory connection between the expression level of classical protein kinase C and pruning of climbing fibers from cerebellar Purkinje cells.

  • Nobutaka Takahashi‎ et al.
  • Journal of neurochemistry‎
  • 2017‎

Cerebellar Purkinje cells (PCs) express two members of the classical protein kinase C (cPKC) subfamily, namely, PKCα and PKCγ. Previous studies on PKCγ knockout (KO) mice have revealed a critical role of PKCγ in the pruning of climbing fibers (CFs) from PCs during development. The question remains as to why only PKCγ and not PKCα is involved in CF synapse elimination from PCs. To address this question, we assessed the expression levels of PKCγ and PKCα in wild-type (WT) and PKCγ KO PCs using PC-specific quantitative real-time reverse transcription-polymerase chain reaction, western blotting, and immunohistochemical analysis. The results revealed that the vast majority of cPKCs in PCs were PKCγ, whereas PKCα accounted for the remaining minimal fraction. The amount of PKCα was not up-regulated in PKCγ KO PCs. Lentiviral expression of PKCα in PKCγ KO PCs resulted in a 10-times increase in the amount of PKCα mRNA in the PKCγ KO PCs, compared to that in WT PCs. Our quantification showed that the expression levels of cPKC mRNA in PKCγ KO PCs increased roughly from 1% to 22% of that in WT PCs solely through PKCα expression. The up-regulation of PKCα in PKCγ KO PCs significantly rescued the impaired CF synapse elimination. Although both PKCα and PKCγ are capable of pruning supernumerary CF synapses from developing PCs, these results suggest that the expression levels of cPKCs in PKCγ KO PCs are too low for CF pruning.


Development of "Pinceaux" formations and dendritic translocation of climbing fibers during the acquisition of the balance between glutamatergic and gamma-aminobutyric acidergic inputs in developing Purkinje cells.

  • Constantino Sotelo‎
  • The Journal of comparative neurology‎
  • 2008‎

The acquisition of the dynamic balance between excitation and inhibition in developing Purkinje cells, necessary for their proper function, is analyzed. Newborn (P0) mouse cerebellum contains glutamatergic (VGLUT2-IR) and gamma-aminobutyric acid (GABA)-ergic (VIAAT-IR) axons. The former prevail and belong to climbing fibers, whereas the latter neither colabel with calbindin-expressing fibers nor belong to axons of the cortical GABAergic interneurons. During the first postnatal week, VIAAT-IR axons in the Purkinje cell neighborhood remains very low, and the first synapses with basket fibers are formed at P7, when climbing fibers have already established dense pericellular nets. The descending basket fibers reach the Purkinje cell axon initial segment by P9, immediately establishing axoaxonic synapses. The pinceaux appear as primitive vortex-like arrangements by P12, and by P20 interbasket fiber septate-like junctions, typical of fully mature pinceaux, are still missing. The climbing fiber's somatodendritic translocation occurs later than expected, after the regression of the multiple innervation, and follows the ascending collaterals of the basket axons, which are apparently the optimal substrate for the proper subcellular targeting of the climbing fibers. These results emphasize that chemical transmission in the axon initial segment precedes the electrical inhibition generated by field effects. In addition, GABAergic Purkinje cells, as opposed to glutamatergic projection neurons in other cortical structures, do not begin to receive their excitation to inhibition balance until the end of the first postnatal week, despite the early presence of potentially functional GABAergic axons that possess the required vesicular transport system.


Prevention of ventricular fibrillation through de-networking of the Purkinje system: Proof-of-Concept Paper on the Substrate Modification of the Purkinje Network.

  • Guram Imnadze‎ et al.
  • Pacing and clinical electrophysiology : PACE‎
  • 2019‎

Sudden cardiac death from ventricular fibrillation (VF) remains a major health problem worldwide. Currently, there are limited treatment options available to patients who suffer from episodes of VF. Because Purkinje fibers have been implicated as a source of initiation of VF, we are presenting the first paper of a series highlighting the promising results of substrate modulation through "De-Networking" of the Purkinje system preventing VF in patients without an alternative ablation strategy.


Climbing fiber input shapes reciprocity of Purkinje cell firing.

  • Aleksandra Badura‎ et al.
  • Neuron‎
  • 2013‎

The cerebellum fine-tunes motor activity via its Purkinje cell output. Purkinje cells produce two different types of spikes, complex spikes and simple spikes, which often show reciprocal activity: a periodical increase in complex spikes is associated with a decrease in simple spikes, and vice versa. This reciprocal firing is thought to be essential for coordinated motor behavior, yet how it is accomplished is debated. Here, we show in Ptf1a::cre;Robo3(lox/lox) mice that selectively rerouting the climbing fibers from a contralateral to an ipsilateral projection reversed the complex-spike modulation during sensory stimulation. Strikingly, modulation of simple spikes, which is supposed to be controlled by mossy fibers, reversed as well. Climbing fibers enforce this reciprocity in part by influencing activity of inhibitory interneurons, because the phase of their activity was also converted. Ptf1a::cre;Robo3(lox/lox) mice showed severe ataxia highlighting that climbing fiber input and its impact on reciprocity of Purkinje cell firing play an important role in motor coordination.


Remodeling of monoplanar Purkinje cell dendrites during cerebellar circuit formation.

  • Megumi Kaneko‎ et al.
  • PloS one‎
  • 2011‎

Dendrite arborization patterns are critical determinants of neuronal connectivity and integration. Planar and highly branched dendrites of the cerebellar Purkinje cell receive specific topographical projections from two major afferent pathways; a single climbing fiber axon from the inferior olive that extend along Purkinje dendrites, and parallel fiber axons of granule cells that contact vertically to the plane of dendrites. It has been believed that murine Purkinje cell dendrites extend in a single parasagittal plane in the molecular layer after the cell polarity is determined during the early postnatal development. By three-dimensional confocal analysis of growing Purkinje cells, we observed that mouse Purkinje cells underwent dynamic dendritic remodeling during circuit maturation in the third postnatal week. After dendrites were polarized and flattened in the early second postnatal week, dendritic arbors gradually expanded in multiple sagittal planes in the molecular layer by intensive growth and branching by the third postnatal week. Dendrites then became confined to a single plane in the fourth postnatal week. Multiplanar Purkinje cells in the third week were often associated by ectopic climbing fibers innervating nearby Purkinje cells in distinct sagittal planes. The mature monoplanar arborization was disrupted in mutant mice with abnormal Purkinje cell connectivity and motor discoordination. The dendrite remodeling was also impaired by pharmacological disruption of normal afferent activity during the second or third postnatal week. Our results suggest that the monoplanar arborization of Purkinje cells is coupled with functional development of the cerebellar circuitry.


Hyperactivation of mTORC1 disrupts cellular homeostasis in cerebellar Purkinje cells.

  • Yusuke Sakai‎ et al.
  • Scientific reports‎
  • 2019‎

Mammalian target of rapamycin (mTOR) is a central regulator of cellular metabolism. The importance of mTORC1 signaling in neuronal development and functions has been highlighted by its strong relationship with many neurological and neuropsychiatric diseases. Previous studies demonstrated that hyperactivation of mTORC1 in forebrain recapitulates tuberous sclerosis and neurodegeneration. In the mouse cerebellum, Purkinje cell-specific knockout of Tsc1/2 has been implicated in autistic-like behaviors. However, since TSC1/2 activity does not always correlate with clinical manifestations as evident in some cases of tuberous sclerosis, the intriguing possibility is raised that phenotypes observed in Tsc1/2 knockout mice cannot be attributable solely to mTORC1 hyperactivation. Here we generated transgenic mice in which mTORC1 signaling is directly hyperactivated in Purkinje cells. The transgenic mice exhibited impaired synapse elimination of climbing fibers and motor discoordination without affecting social behaviors. Furthermore, mTORC1 hyperactivation induced prominent apoptosis of Purkinje cells, accompanied with dysregulated cellular homeostasis including cell enlargement, increased mitochondrial respiratory activity, and activation of pseudohypoxic response. These findings suggest the different contributions between hyperactivated mTORC1 and Tsc1/2 knockout in social behaviors, and reveal the perturbations of cellular homeostasis by hyperactivated mTORC1 as possible underlying mechanisms of neuronal dysfunctions and death in tuberous sclerosis and neurodegenerative diseases.


Noradrenergic modulation of the parallel fiber-Purkinje cell synapse in mouse cerebellum.

  • Pellegrino Lippiello‎ et al.
  • Neuropharmacology‎
  • 2015‎

The signals arriving to Purkinje cells via parallel fibers are essential for all tasks in which the cerebellum is involved, including motor control, learning new motor skills and calibration of reflexes. Since learning also requires the activation of adrenergic receptors, we investigated the effects of adrenergic receptor agonists on the main plastic site of the cerebellar cortex, the parallel fiber-Purkinje cell synapse. Here we show that noradrenaline serves as an endogenous ligand for both α1-and α2-adrenergic receptors to produce synaptic depression between parallel fibers and Purkinje cells. On the contrary, PF-EPSCs were potentiated by the β-adrenergic receptor agonist isoproterenol. This short-term potentiation was postsynaptically expressed, required protein kinase A, and was mimicked by the β2-adrenoceptor agonist clenbuterol, suggesting that the β2-adrenoceptors mediate the noradrenergic facilitation of synaptic transmission between parallel fibers and Purkinje cells. Moreover, β-adrenoceptor activation lowered the threshold for cerebellar long-term potentiation induced by 1 Hz parallel fiber stimulation. The presence of both α and β adrenergic receptors on Purkinje cells suggests the existence of bidirectional mechanisms of regulation allowing the noradrenergic afferents to refine the signals arriving to Purkinje cells at particular arousal states or during learning.


Molecular layer interneurons shape the spike activity of cerebellar Purkinje cells.

  • Amanda M Brown‎ et al.
  • Scientific reports‎
  • 2019‎

Purkinje cells receive synaptic input from several classes of interneurons. Here, we address the roles of inhibitory molecular layer interneurons in establishing Purkinje cell function in vivo. Using conditional genetics approaches in mice, we compare how the lack of stellate cell versus basket cell GABAergic neurotransmission sculpts the firing properties of Purkinje cells. We take advantage of an inducible Ascl1CreER allele to spatially and temporally target the deletion of the vesicular GABA transporter, Vgat, in developing neurons. Selective depletion of basket cell GABAergic neurotransmission increases the frequency of Purkinje cell simple spike firing and decreases the frequency of complex spike firing in adult behaving mice. In contrast, lack of stellate cell communication increases the regularity of Purkinje cell simple spike firing while increasing the frequency of complex spike firing. Our data uncover complementary roles for molecular layer interneurons in shaping the rate and pattern of Purkinje cell activity in vivo.


Inhibition gates supralinear Ca2+ signaling in Purkinje cell dendrites during practiced movements.

  • Michael A Gaffield‎ et al.
  • eLife‎
  • 2018‎

Motor learning involves neural circuit modifications in the cerebellar cortex, likely through re-weighting of parallel fiber inputs onto Purkinje cells (PCs). Climbing fibers instruct these synaptic modifications when they excite PCs in conjunction with parallel fiber activity, a pairing that enhances climbing fiber-evoked Ca2+ signaling in PC dendrites. In vivo, climbing fibers spike continuously, including during movements when parallel fibers are simultaneously conveying sensorimotor information to PCs. Whether parallel fiber activity enhances climbing fiber Ca2+ signaling during motor behaviors is unknown. In mice, we found that inhibitory molecular layer interneurons (MLIs), activated by parallel fibers during practiced movements, suppressed parallel fiber enhancement of climbing fiber Ca2+ signaling in PCs. Similar results were obtained in acute slices for brief parallel fiber stimuli. Interestingly, more prolonged parallel fiber excitation revealed latent supralinear Ca2+ signaling. Therefore, the balance of parallel fiber and MLI input onto PCs regulates concomitant climbing fiber Ca2+ signaling.


Organization of Purkinje cell development by neuronal MEGF11 in cerebellar granule cells.

  • Soyoung Jun‎ et al.
  • Cell reports‎
  • 2023‎

As cerebellar granule cells (GCs) coordinate the formation of regular cerebellar networks during postnatal development, molecules in GCs are expected to be involved. Here, we test the effects of the knockdown (KD) of multiple epidermal growth factor-like domains protein 11 (MEGF11), which is a homolog of proteins mediating astrocytic phagocytosis but is substantially increased at the later developmental stages of GCs on cerebellar development. MEGF11-KD in GCs of developing mice results in abnormal cerebellar structures, including extensively ectopic Purkinje cell (PC) somas, and in impaired motor functions. MEGF11-KD also causes abnormally asynchronous synaptic release from GC axons, parallel fibers, before the appearance of abnormal cerebellar structures. Interestingly, blockade of this abnormal synaptic release restores most of the cerebellar structures. Thus, apart from phagocytic functions of its related homologs in astrocytes, MEGF11 in GCs promotes proper PC development and cerebellar network formation by regulating immature synaptic transmission.


Persistent posttetanic depression at cerebellar parallel fiber to Purkinje cell synapses.

  • Astrid Bergerot‎ et al.
  • PloS one‎
  • 2013‎

Plasticity at the cerebellar parallel fiber to Purkinje cell synapse may underlie information processing and motor learning. In vivo, parallel fibers appear to fire in short high frequency bursts likely to activate sparsely distributed synapses over the Purkinje cell dendritic tree. Here, we report that short parallel fiber tetanic stimulation evokes a ∼7-15% depression which develops over 2 min and lasts for at least 20 min. In contrast to the concomitantly evoked short-term endocannabinoid-mediated depression, this persistent posttetanic depression (PTD) does not exhibit a dependency on the spatial pattern of synapse activation and is not caused by any detectable change in presynaptic calcium signaling. This persistent PTD is however associated with increased paired-pulse facilitation and coefficient of variation of synaptic responses, suggesting that its expression is presynaptic. The chelation of postsynaptic calcium prevents its induction, suggesting that post- to presynaptic (retrograde) signaling is required. We rule out endocannabinoid signaling since the inhibition of type 1 cannabinoid receptors, monoacylglycerol lipase or vanilloid receptor 1, or incubation with anandamide had no detectable effect. The persistent PTD is maximal in pre-adolescent mice, abolished by adrenergic and dopaminergic receptors block, but unaffected by adrenergic and dopaminergic agonists. Our data unveils a novel form of plasticity at parallel fiber synapses: a persistent PTD induced by physiologically relevant input patterns, age-dependent, and strongly modulated by the monoaminergic system. We further provide evidence supporting that the plasticity mechanism involves retrograde signaling and presynaptic diacylglycerol.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: