Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 3 showing 41 ~ 60 papers out of 2,986 papers

Reduction Pathway-Dependent Formation of Reactive Fe(II) Sites in Clay Minerals.

  • Katherine A Rothwell‎ et al.
  • Environmental science & technology‎
  • 2023‎

Structural Fe in clay minerals is an important, potentially renewable source of electron equivalents for contaminant reduction, yet our knowledge of how clay mineral Fe reduction pathways and Fe reduction extent affect clay mineral Fe(II) reactivity is limited. Here, we used a nitroaromatic compound (NAC) as a reactive probe molecule to assess the reactivity of chemically reduced (dithionite) and Fe(II)-reduced nontronite across a range of reduction extents. We observed biphasic transformation kinetics for all nontronite reduction extents of ≥5% Fe(II)/Fe(total) regardless of the reduction pathway, indicating that two Fe(II) sites of different reactivities form in nontronite at environmentally relevant reduction extents. At even lower reduction extents, Fe(II)-reduced nontronite completely reduced the NAC whereas dithionite-reduced nontronite could not. Our 57Fe Mössbauer spectroscopy, ultraviolet-visible spectroscopy, and kinetic modeling results suggest that the highly reactive Fe(II) entities likely comprise di/trioctahedral Fe(II) domains in the nontronite structure regardless of the reduction mechanism. However, the second Fe(II) species, of lower reactivity, varies and for Fe(II)-reacted NAu-1 likely comprises Fe(II) associated with an Fe-bearing precipitate formed during electron transfer from aqueous to nontronite Fe. Both our observation of biphasic reduction kinetics and the nonlinear relationship of rate constant and clay mineral reduction potential EH have major implications for contaminant fate and remediation.


Microbial reduction of Fe(III)-bearing clay minerals in the presence of humic acids.

  • Guangfei Liu‎ et al.
  • Scientific reports‎
  • 2017‎

Both Fe(III)-bearing clay minerals and humic acids (HAs) are abundant in the soils and sediments. Previous studies have shown that bioreduction of structural Fe(III) in clay minerals could be accelerated by adding anthraquinone compound as a redox-active surrogate of HAs. However, a quinoid analogue could not reflect the adsorption and complexation properties of HA, and little is known about the effects of real HAs at environmental concentration on bioreduction of clay minerals. Here, it was shown that 10-200 mg l-1 of natural or artificially synthesized HAs could effectively stimulate the bioreduction rate and extent of Fe(III) in both iron-rich nontronite NAu-2 and iron-deficient montmorillonite SWy-2. After adsorption to NAu-2, electron-transfer activities of different HA fractions were compared. Additionally, Fe(II) complexation by HAs also contributed to improvement of clay-Fe(III) bioreduction. Spectrosopic and morphological analyses suggested that HA addition accelerated the transformation of NAu-2 to illite, silica and siderite after reductive dissolution.


The effect of locomotion on the mobilization of minerals from the maternal skeleton.

  • Wendy R Hood‎ et al.
  • PloS one‎
  • 2015‎

Bone is a dynamic tissue from which minerals are deposited or withdrawn according to the body's demand. During late pregnancy and lactation, female mammals mobilize mineral from bone to support the ossification of offspring skeleton(s). Conversely, in response to mechanical loading, minerals are deposited in bone enabling it to develop a stronger architecture. Despite their central importance to reproductive performance and skeletal integrity, the interactions between these potentially opposing forces remains poorly understood. It is possible that inter-individual differences in the loading imposed by different forms of locomotion may alter the amount of mineral mobilized during reproduction. Here, the impact of vertical versus horizontal locomotion on bone mobilization was examined during reproduction in the laboratory mouse. The vertical, or climbing, group had access to a 60-cm tower, increasing strain on their appendicular skeleton. The horizontal, or tunnel, group had access to a 100-cm tunnel, which encouraged movements within the horizontal plane. Form of locomotion did not impact the amount of bone females mobilized during reproduction or the amount of mineral females deposited in the litter, but maternal bone architecture differed between groups. The climbing group displayed more trabeculae than the tunnel group, whereas the tunnel group displayed greater cortical bone mineral density mid-shaft. Interestingly, pups born to mothers in the climbing group had a higher concentration of total body calcium at 16 days than pups of mothers in the tunnel group. As maternal total body calcium composition and the amount of calcium invested in the full litter were not different between groups, the difference in the relative calcium content of pups between groups is not suspected to reflect difference in mineral allocation. Future research should consider the impact of maternal activity on the efficiency of offspring skeletal ossification via hormones and other bioactive factors transferred in utero and in milk.


Vitamin E improved bone strength and bone minerals in male rats given alcohol.

  • Syuhada Zakaria‎ et al.
  • Iranian journal of basic medical sciences‎
  • 2017‎

Alcohol consumption induces oxidative stress on bone, which in turn increases the risk of osteoporosis. This study determined the effects of vitamin E on bone strength and bone mineral content in alcohol-induced osteoporotic rats.


Deep Ocean Minerals Minimize Eccentric Exercise-Induced Inflammatory Response of Rat Skeletal Muscle.

  • Suchada Saovieng‎ et al.
  • Frontiers in physiology‎
  • 2018‎

Background: We have previously shown an accelerated recovery from muscle fatigue in men challenged by prolonged exercise after oral deep ocean minerals (DOM) supplementation. Here, we hypothesized a decrease in eccentric exercise-induced muscle inflammation in rats regularly consuming DOM-containing drinks (hardness 600 mg/L and fructose 11%). Methods: Forty-seven male Sprague Dawley rats were randomized into 4 groups: Control (C, N = 12), Fructose (F, N = 12), Fructose+Exercise (FE, N = 12), and Fructose+Exercise+DOM (FED, N = 11). Since fructose is a commonly used ingredient in beverages, 11% of fructose was added as a vehicle of the study. Soleus muscles of rats were analyzed 24 h after an acute bout of downhill running following 9 weeks of DOM supplementation. Results: Leukocyte infiltration and TNF-α mRNA of muscle in the FE group were 5 times and 4 times greater the F group, respectively, (P < 0.05). Both markers in the FED group were significantly lower than those in the FE group (P < 0.05). IL-10 mRNA of muscle in the F group was >eight fold greater than the C group (P < 0.05). The reduced glutathione (GSH) of muscle in the F group was 34% lower than that in the C group (P < 0.05). However, GSH levels were similar for the C and FED groups. Conclusion: Prolonged fructose supplementation modulates inflammatory balance of rat skeletal muscle. The results of the study suggest that DOM can minimize eccentric exercise-induced inflammatory cytokine responses in rat skeletal muscle.


Effects of a Trans-Galactooligosaccharide on Minerals Content of Common Carp (Cyprinus carpio L.) Tissues.

  • Ewa Ziółkowska‎ et al.
  • Biological trace element research‎
  • 2021‎

Common carp (Cyprinus carpio L.) is a dominant fish species in aquaculture, and as it is a stomachless species, absorption and digestion of nutrients take place in the intestine. The aim of the study was to evaluate the effects of a prebiotic on the content of selected minerals found in the meat, gills, and skeleton of common carp. The research applied trans-galactooligosaccharide (GOS) prebiotic produced by enzymatic transgalactosylation of milk lactose by whole cells of Bifidobacterium bifidum. The following diets have been applied: control diet without feed additives (C), diet 2 (B1) with 1% of GOS, and diet 3 (B2) with 2% of GOS. In the freeze-dried samples, concentrations of the analyzed metals were determined using atomic absorption spectroscopy (AAS). The content of phosphorus was determined using colorimetric method. The analyses confirmed that the highest level of Mg was detected in the skeleton of fish fed with 1% GOS (2.51 g kg-1) and was significantly higher compared the control treatment (2.11 g kg-1) (P < 0.05). Zn content in fish meat fed with 1% GOS (35.41 mg kg-1) was significantly higher (P < 0.05) than in the control group (24.59 mg kg-1). The tissue that accumulated the greatest amount of Zn was the gills. GOS had a positive effect on Fe accumulation in the meat, gills, and skeleton. It has been concluded that supplementation of feed with 2% GOS significantly influenced the positive correlations between Mg and P in the meat and skeleton, Fe-Ca correlation in gills, and Fe-Zn correlation in the skeleton.


Ultrasound assisted extraction of amino acids and nucleobases from clay minerals and astrobiological samples.

  • Ramzi Timoumi‎ et al.
  • Ultrasonics sonochemistry‎
  • 2024‎

The study of organic molecules in meteorite and return samples allows for the understanding of the chemistry that undergoes in our Solar System. The present work aims at studying ultrasound assisted extraction technique as effective extraction method for these molecules in extraterrestrial samples and analogs. Optimal conditions were selected from the investigation of ultrasonic frequency, irradiation duration and solvent effects on amino acids, nucleobases and dipeptides extraction yields from a model clay-rich mineral matrix. Optimal ultrasound-assisted extraction parameters were frequency of 20 kHz within 20 min irradiation time and methanol/water solvent ratio of 1. We then validated this protocol on Mukundpura and Tarda meteorite fragments and compared it to the reference extraction protocol used in astrobiology and based on 24 h extraction time at 100 °C in water We obtained similar quantitative results without any racemization with both methodologies.


Content and Availability of Minerals in Plant-Based Burgers Compared with a Meat Burger.

  • Gladys O Latunde-Dada‎ et al.
  • Nutrients‎
  • 2023‎

Increasing numbers of individuals follow plant-based diets. This has sparked interest in the nutritional evaluation of the meat substitute sector. Nutritional understanding of these products is vital as plant-based eating becomes more common. For example, animal products are rich sources of iron and zinc, and plant-based foods could be inadequate in these minerals. The main aim was to analyse the mineral composition and absorption from a range of plant-based meat-free burgers and compare them to a typical beef burger. Total and bioaccessible mineral contents of plant-based burgers and a beef burger were determined using microwave digestion and in vitro simulated gastrointestinal digestion, respectively. Mineral bioavailability was analysed by in vitro simulated gastrointestinal digestion of foods, followed by exposure of Caco-2 cells to the sample digests and assessment of mineral uptake. Mineral quantification for all samples was achieved using inductively coupled ICP-optical emission spectrometry (ICP-OES). The content of minerals varied significantly amongst the burgers. Significantly greater quantities of Fe and Zn were found in the beef burger compared to most meat substitutes. Bioaccessible Fe was significantly higher in the beef compared to most of the plant-based meat alternatives; however, bioavailable Fe of most plant-based burgers was comparable to beef (p > 0.05). Similarly, bioaccessible Zn was significantly (p < 0.001) higher from the beef burger. Moreover, beef was superior regarding bioavailable Zn (p ≤ 0.05-0.0001), with only the mycoprotein burger displaying comparable Zn bioavailability (p > 0.05). Beef is an excellent source of bioaccessible Fe and Zn compared to most plant-based substitutes; however, these plant-based substitutes were superior sources of Ca, Cu, Mg and Mn. The quantity of bioaccessible and absorbable Fe varies dramatically among the meat alternatives. Plant-based burgers have the potential to provide adequate quantities of iron and zinc to those consuming such burgers as part of a varied diet. Thus, guiding consumer choices will depend on the variety of the vegetable constituents and their iron nutritional quality in different burgers.


High-Throughput, Temporal and Dose Dependent, Effect of Vitamins and Minerals on Chondrogenesis.

  • James E Dennis‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2020‎

Tissue engineered hyaline cartilage is plagued by poor mechanical properties largely due to inadequate type II collagen expression. Of note, commonly used defined chondrogenic media lack 14 vitamins and minerals, some of which are implicated in chondrogenesis. Type II collagen promoter-driven Gaussia luciferase was transfected into ATDC5 cells to create a chondrogenic cell with a secreted-reporter. The reporter cells were used in an aggregate-based chondrogenic culture model to develop a high-throughput analytic platform. This high-throughput platform was used to assess the effect of vitamins and minerals, alone and in combination with TGFβ1, on COL2A1 promoter-driven expression. Significant combinatorial effects between vitamins, minerals, and TGFβ1 in terms of COL2A1 promoter-driven expression and metabolism were discovered. An "optimal" continual supplement of copper and vitamin K in the presence of TGFβ1 gave a 2.5-fold increase in COL2A1 promoter-driven expression over TGFβ1 supplemented media alone in ATDC5 cells.


Purification, Detoxification, and Incineration Methods of Minerals and Metals in Traditional Medicine Formulations of Sri Lanka.

  • Horadugoda Gamage Sujatha Pushpakanthi Hewageegana‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Herbo-mineral therapies are very popular in traditional medical systems and formulations consisting of specific minerals or metals or mixture of both and mixed with organic components derived from plants. Purification/detoxification or incineration procedures play an important role to detoxify these and metals and minerals.


Minerals in the pre-settled coral Stylophora pistillata crystallize via protein and ion changes.

  • Anat Akiva‎ et al.
  • Nature communications‎
  • 2018‎

Aragonite skeletons in corals are key contributors to the storage of atmospheric CO2 worldwide. Hence, understanding coral biomineralization/calcification processes is crucial for evaluating and predicting the effect of environmental factors on this process. While coral biomineralization studies have focused on adult corals, the exact stage at which corals initiate mineralization remains enigmatic. Here, we show that minerals are first precipitated as amorphous calcium carbonate and small aragonite crystallites, in the pre-settled larva, which then evolve into the more mature aragonitic fibers characteristic of the stony coral skeleton. The process is accompanied by modulation of proteins and ions within these minerals. These findings may indicate an underlying bimodal regulation tactic adopted by the animal, with important ramification to its resilience or vulnerability toward a changing environment.


Global distribution of clay-size minerals on land surface for biogeochemical and climatological studies.

  • Akihiko Ito‎ et al.
  • Scientific data‎
  • 2017‎

Clay-size minerals play important roles in terrestrial biogeochemistry and atmospheric physics, but their data have been only partially compiled at global scale. We present a global dataset of clay-size minerals in the topsoil and subsoil at different spatial resolutions. The data of soil clay and its mineralogical composition were gathered through a literature survey and aggregated by soil orders of the Soil Taxonomy for each of the ten groups: gibbsite, kaolinite, illite/mica, smectite, vermiculite, chlorite, iron oxide, quartz, non-crystalline, and others. Using a global soil map, a global dataset of soil clay-size mineral distribution was developed at resolutions of 2' to 2° grid cells. The data uncertainty associated with data variability and assumption was evaluated using a Monte Carlo method, and validity of the clay-size mineral distribution obtained in this study was examined by comparing with other datasets. The global soil clay data offer spatially explicit studies on terrestrial biogeochemical cycles, dust emission to the atmosphere, and other interdisciplinary earth sciences.


Microbial- and thiosulfate-mediated dissolution of mercury sulfide minerals and transformation to gaseous mercury.

  • Adiari I Vázquez-Rodríguez‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

Mercury (Hg) is a toxic heavy metal that poses significant environmental and human health risks. Soils and sediments, where Hg can exist as the Hg sulfide mineral metacinnabar (β-HgS), represent major Hg reservoirs in aquatic environments. Metacinnabar has historically been considered a sink for Hg in all but severely acidic environments, and thus disregarded as a potential source of Hg back to aqueous or gaseous pools. Here, we conducted a combination of field and laboratory incubations to identify the potential for metacinnabar as a source of dissolved Hg within near neutral pH environments and the underpinning (a)biotic mechanisms at play. We show that the abundant and widespread sulfur-oxidizing bacteria of the genus Thiobacillus extensively colonized metacinnabar chips incubated within aerobic, near neutral pH creek sediments. Laboratory incubations of axenic Thiobacillus thioparus cultures led to the release of metacinnabar-hosted Hg(II) and subsequent volatilization to Hg(0). This dissolution and volatilization was greatly enhanced in the presence of thiosulfate, which served a dual role by enhancing HgS dissolution through Hg complexation and providing an additional metabolic substrate for Thiobacillus. These findings reveal a new coupled abiotic-biotic pathway for the transformation of metacinnabar-bound Hg(II) to Hg(0), while expanding the sulfide substrates available for neutrophilic chemosynthetic bacteria to Hg-laden sulfides. They also point to mineral-hosted Hg as an underappreciated source of gaseous elemental Hg to the environment.


Genome-wide association study of serum minerals levels in children of different ethnic background.

  • Xiao Chang‎ et al.
  • PloS one‎
  • 2015‎

Calcium, magnesium, potassium, sodium, chloride and phosphorus are the major dietary minerals involved in various biological functions and are commonly measured in the blood serum. Sufficient mineral intake is especially important for children due to their rapid growth. Currently, the genetic mechanisms influencing serum mineral levels are poorly understood, especially for children. We carried out a genome-wide association (GWA) study on 5,602 European-American children and 4,706 African-American children who had mineral measures available in their electronic medical records (EMR). While no locus met the criteria for genome-wide significant association, our results demonstrated a nominal association of total serum calcium levels with a missense variant in the calcium -sensing receptor (CASR) gene on 3q13 (rs1801725, P = 1.96 × 10(-3)) in the African-American pediatric cohort, a locus previously reported in Caucasians. We also confirmed the association result in our pediatric European-American cohort (P = 1.38 × 10(-4)). We further replicated two other loci associated with serum calcium levels in the European-American cohort (rs780094, GCKR, P = 4.26 × 10(-3); rs10491003, GATA3, P = 0.02). In addition, we replicated a previously reported locus on 1q21, demonstrating association of serum magnesium levels with MUC1 (rs4072037, P = 2.04 × 10(-6)). Moreover, in an extended gene-based association analysis we uncovered evidence for association of calcium levels with the previously reported gene locus DGKD in both European-American children and African-American children. Taken together, our results support a role for CASR and DGKD mediated calcium regulation in both African-American and European-American children, and corroborate the association of calcium levels with GCKR and GATA3, and the association of magnesium levels with MUC1 in the European-American children.


Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides.

  • Wenting Ma‎ et al.
  • NPJ biofilms and microbiomes‎
  • 2017‎

Clay minerals and metal oxides, as important parts of the soil matrix, play crucial roles in the development of microbial communities. However, the mechanism underlying such a process, particularly on the formation of soil biofilm, remains poorly understood. Here, we investigated the effects of montmorillonite, kaolinite, and goethite on the biofilm formation of the representative soil bacteria Bacillus subtilis. The bacterial biofilm formation in goethite was found to be impaired in the initial 24 h but burst at 48 h in the liquid-air interface. Confocal laser scanning microscopy showed that the biofilm biomass in goethite was 3-16 times that of the control, montmorillonite, and kaolinite at 48 h. Live/Dead staining showed that cells had the highest death rate of 60% after 4 h of contact with goethite, followed by kaolinite and montmorillonite. Atomic force microscopy showed that the interaction between goethite and bacteria may injure bacterial cells by puncturing cell wall, leading to the swarming of bacteria toward the liquid-air interface. Additionally, the expressions of abrB and sinR, key players in regulating the biofilm formation, were upregulated at 24 h and downregulated at 48 h in goethite, indicating the initial adaptation of the cells to minerals. A model was proposed to describe the effects of goethite on the biofilm formation. Our findings may facilitate a better understanding of the roles of soil clays in biofilm development and the manipulation of bacterial compositions through controlling the biofilm in soils.


Adsorption Characteristics of Anionic Surfactant Sodium Dodecylbenzene Sulfonate on the Surface of Montmorillonite Minerals.

  • Xiaoming Ni‎ et al.
  • Frontiers in chemistry‎
  • 2018‎

The adsorption characteristics of sodium dodecylbenzene sulfonate (SDBS) on the surface of montmorillonite can lay a foundation for obtaining the optimum concentration of the anionic surfactant. The best absorption wavelength of SDBS was determined using an ultraviolet spectrophotometer. The standard curves of concentration and absorbance of SDBS were established. The amount of SDBS adsorbed on the surface of montmorillonite at various concentrations was calculated by stirring adsorption method. Scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS), X-ray diffraction (XRD), zeta potentiometer, and Fourier transform infrared (FTIR) spectroscopy were used to observe the changes of the structure, main ions, interlayer spacing, potential, and main functional groups on the montmorillonite surface before, and after, adsorption. The test results of SEM with EDS (SEM-EDS) showed that the surface of the montmorillonite after SDBS adsorption was rougher, and the adsorption capacity of the surface was enhanced as the SDBS concentration increased. The XRD results indicated that SDBS adsorbed on the interlayer of montmorillonite repulsed interlayer water and reduced the interlayer water content. With the increase of SDBS concentration, the interlayer spacing of the montmorillonite available for adsorbing SDBS decreased further. Additionally, interlayer adsorption and surface adsorption exist simultaneously in montmorillonite in SDBS solution. The distribution of total adsorption capacity of SDBS in the layers and on the surface of montmorillonite accords with the adsorption result simulated by a pseudo-second-order kinetic model. The increase in concentration of SDBS adsorbed by montmorillonite is the main reason for the decreased initial adsorption rate. The zeta potential test showed that the addition of H+ to the SDBS solution could reduce electrostatic repulsion and promote the adsorption of SDBS on montmorillonite. The results of this study provide an experimental basis for the study of the mechanism of SDBS adsorption on montmorillonite.


The Effect of Polyphenols, Minerals, Fibers, and Fruits on Irritable Bowel Syndrome: A Systematic Review.

  • Giuseppe Chiarioni‎ et al.
  • Nutrients‎
  • 2023‎

Irritable bowel syndrome (IBS) is a chronic gastrointestinal disorder characterized by abdominal pain, bloating, and changes in bowel habits. Various dietary factors have been implicated in the pathogenesis and management of IBS symptoms. This systematic review aims to evaluate the effects of polyphenols, minerals, fibers, and fruits on the symptoms and overall well-being of individuals with IBS.


Aspergillus niger Decreases Bioavailability of Arsenic(V) via Biotransformation of Manganese Oxide into Biogenic Oxalate Minerals.

  • Bence Farkas‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2020‎

The aim of this work was to evaluate the transformation of manganese oxide (hausmannite) by microscopic filamentous fungus Aspergillus niger and the effects of the transformation on mobility and bioavailability of arsenic. Our results showed that the A. niger strain CBS 140837 greatly affected the stability of hausmannite and induced its transformation into biogenic crystals of manganese oxalates-falottaite and lindbergite. The transformation was enabled by fungal acidolysis of hausmannite and subsequent release of manganese ions into the culture medium. While almost 45% of manganese was bioextracted, the arsenic content in manganese precipitates increased throughout the 25-day static cultivation of fungus. This significantly decreased the bioavailability of arsenic for the fungus. These results highlight the unique A. niger strain's ability to act as an active geochemical factor via its ability to acidify its environment and to induce formation of biogenic minerals. This affects not only the manganese speciation, but also bioaccumulation of potentially toxic metals and metalloids associated with manganese oxides, including arsenic.


Salinity stress accelerates nutrients, dietary fiber, minerals, phytochemicals and antioxidant activity in Amaranthus tricolor leaves.

  • Umakanta Sarker‎ et al.
  • PloS one‎
  • 2018‎

Impact of salinity stress were investigated in three selected Amaranthus tricolor accessions in terms of nutrients, dietary fiber, minerals, antioxidant phytochemicals and total antioxidant activity in leaves. Salinity stress enhanced biochemical contents and antioxidant activity in A. tricolor leaves. Protein, ash, energy, dietary fiber, minerals (Ca, Mg, Fe, Mn, Cu, Zn, and Na), β-carotene, ascorbic acid, total polyphenol content (TPC), total flavonoid content (TFC), total antioxidant capacity (TAC) (DPPH and ABTS+) in leaves were increased by 18%, 6%, 5%, 16%, 9%, 16%, 11%, 17%, 38%, 20%, 64%, 31%, 22%, 16%, 16%, 25% and 17%, respectively at 50 mM NaCl concentration and 31%, 12%, 6%, 30%, 57%, 35%, 95%, 96%, 82%, 87%, 27%, 63%, 82%, 39%, 30%, 58% and 47%, respectively at 100 mM NaCl concentration compared to control condition. Contents of vitamins, polyphenols and flavonoids showed a good antioxidant activity due to positive and significant interrelationships with total antioxidant capacity. It revealed that A. tricolor can tolerate a certain level of salinity stress without compromising the nutritional quality of the final product. This report for the first time demonstrated that salinity stress at certain level remarkably enhances nutritional quality of the leafy vegetable A. tricolor. Taken together, our results suggest that A. tricolor could be a promising alternative crop for farmers in salinity prone areas- in the tropical and sub-tropical regions with enriched nutritional contents and antioxidant activity.


Toward Reducing Surfactant Adsorption on Clay Minerals by Lignin for Enhanced Oil Recovery Application.

  • Azza Hashim Abbas‎ et al.
  • ACS omega‎
  • 2021‎

The significant loss of surfactants during reservoir flooding is a challenge in oil field operations. The presence of clay minerals affects the surfactant performance, resulting in surfactant losses. This is because the mineralogical composition of the reservoir results in unpredicted adsorption quantity. Therefore, this paper seeks to investigate Aerosol-OT's adsorption on different quartz/clay mineral compositions during the flow. Also, it investigates adsorption mitigation by preflushing with lignin. The dynamic experiments were conducted on sand packs composed of quartz-sand and up to a 7% clay mineral content. The results obtained from the surfactant losses were compared with/without lignin preflush at different pH values. The main observation was the direct relationship between increasing the composition of clay minerals and the surfactant pore volume required to overcome the adsorption. The highest adsorption calculated was 46 g/kg for 7% kaolinite. Moreover, lignin successfully reduced the adsorption of Aerosol-OT by 60%. Therefore, the results demonstrate that the effects of the clay mineral content on adsorption could be efficiently minimized using lignin at a high pH.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: