Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats.

  • Ji Hyeon Ahn‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN‑immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging.


Age-dependent differences in myelin basic protein expression in the hippocampus of young, adult and aged gerbils.

  • Ji Hyeon Ahn‎ et al.
  • Laboratory animal research‎
  • 2017‎

Myelin degeneration is one of the characteristics of aging and degenerative diseases. This study investigated age-related alterations in expression of myelin basic protein (MBP) in the hippocampal subregions (dentate gyrus, CA2/3 and CA1 areas) of gerbils of various ages; young (1 month), adult (6 months) and aged (24 months), using western blot and immunohistochemistry. Western blot results showed tendencies of age-related reductions of MBP levels. MBP immunoreactivity was significantly decreased with age in synaptic sites of trisynaptic loops, perforant paths, mossy fibers, and Schaffer collaterals. In particular, MBP immunoreactive fibers in the dentate molecular cell layer (perforant path) was significantly reduced in adult and aged subjects. In addition, MBP immunoreactive mossy fibers in the dentate polymorphic layer and in the CA3 striatum radiatum was significantly decreased in the aged group. Furthermore, we observed similar age-related alterations in the CA1 stratum radiatum (Schaffer collaterals). However, the density of MBP immunoreactive fibers in the dentate granular cell layer and CA stratum pyramidale was decreased with aging. These findings indicate that expression of MBP is age-dependent and tissue specific according to hippocampal layers.


Comparison of arylalkylamine N-acetyltransferase and melatonin receptor type 1B immunoreactivity between young adult and aged canine spinal cord.

  • Ji Hyeon Ahn‎ et al.
  • Journal of veterinary science‎
  • 2014‎

Melatonin affects diverse physiological functions through its receptor and plays an important role in the central nervous system. In the present study, we compared immunoreactivity patterns of arylalkylamine N-acetyltransferase (AANAT), an enzyme essential for melatonin synthesis, and melatonin receptor type 1B (MT2) in the spinal cord of young adult (2~3 years) and aged (10~12 years) beagle dogs using immunohistochemistry and Western blotting. AANAT-specific immunoreactivity was observed in the nuclei of spinal neurons, and was significantly increased in aged dog spinal neurons compared to young adult spinal neurons. MT2-specific immunoreactivity was found in the cytoplasm of spinal neurons, and was predominantly increased in the margin of the neuron cytoplasm in aged spinal cord compared to that in the young adult dogs. These increased levels of AANAT and MT2 immunoreactivity in aged spinal cord might be a feature of normal aging and associated with a feedback mechanism that compensates for decreased production of melatonin during aging.


Differences in TNF‑α and TNF‑R1 expression in damaged neurons and activated astrocytes of the hippocampal CA1 region between young and adult gerbils following transient forebrain ischemia.

  • Choong Hyun Lee‎ et al.
  • Molecular medicine reports‎
  • 2021‎

Tumor necrosis factor (TNF)‑α and TNF receptor 1 (TNF‑R1) play diverse roles in modulating the neuronal damage induced by cerebral ischemia. The present study compared the time‑dependent changes of TNF‑α and TNF‑R1 protein expression levels in the hippocampal subfield cornu ammonis 1 (CA1) between adult and young gerbils following transient forebrain ischemia (tFI), via western blot and immunohistochemistry analyses. In adult gerbils, delayed neuronal death of pyramidal neurons, the principal neurons in CA1, was recorded 4 days after tFI; however, in young gerbils, delayed neuronal death was recorded 7 days after tFI. TNF‑α protein expression levels gradually increased in both groups following tFI; however, TNF‑α expression was higher in young gerbils compared with adult gerbils. TNF‑R1 protein expression levels markedly increased in both groups 1 day after tFI. Subsequently, TNF‑R1 expression gradually decreased in young gerbils, whereas TNF‑R1 expression levels were irregularly altered in adult gerbils following tFI. Notably, TNF‑α immunoreactivity significantly increased in pyramidal neurons in both groups 1 day after tFI; however, the patterns altered between both groups. In adult gerbils, TNF‑α immunoreactivity was rarely exhibited in pyramidal neurons 4 days after tFI due to neuronal death, suggesting that TNF‑α immunoreactivity was newly expressed in astrocytes. In young gerbils, TNF‑α immunoreactivity increased in pyramidal neurons 4 days after tFI, and TNF‑α immunoreactivity was newly expressed in astrocytes. In addition, TNF‑R1 immunoreactivity was exhibited in pyramidal cells of both sham groups, and significantly increased 1 day after tFI; however, the patterns altered between both groups. In adult gerbils, TNF‑R1 immunoreactivity was rarely exhibited 4 days after tFI, and astrocytes newly expressed TNF‑R1 immunoreactivity. In young gerbils, TNF‑R1 immunoreactivity increased in pyramidal neurons 4 days after tFI; however, TNF‑R1 immunoreactivity was not reported in pyramidal neurons and astrocytes thereafter. Taken together, the results of the present study suggest that different expression levels of TNF‑α and TNF‑R1 in ischemic CA1 between adult and young gerbils may be due to age‑dependent differences of tFI‑induced neuronal death.


Increases of antioxidants are related to more delayed neuronal death in the hippocampal CA1 region of the young gerbil induced by transient cerebral ischemia.

  • Bing Chun Yan‎ et al.
  • Brain research‎
  • 2011‎

In age-related studies, young animals are resistant to ischemic damage. In present study, we investigated the neuronal death of pyramidal neurons and compared changes in the immunoreactivities and levels of antioxidants, Cu/Zn-SOD (SOD1), Mn-SOD (SOD2), catalase (CAT) and glutathione peroxidase (Gpx), in the hippocampal CA1 region between adult and young gerbils after 5 min of transient cerebral ischemia. In the adult ischemia-group, only a few (12%) of CA1 pyramidal neurons survived 4 days after ischemia-reperfusion (I-R); however, in the 4 days after I-R the young group, most of CA1 pyramidal neurons survived. Seven days after I-R, many (about 39%) of CA1 pyramidal neurons survived, thereafter, the neuronal death in the CA1 pyramidal neurons was not significantly changed. The immunoreactivities of all the antioxidants were well detected in CA1 pyramidal neurons in the adult sham-groups; in the young sham-groups, they were distinctively low compared to those in the adult sham-group. Four days after I-R in the adult group, all the immunoreactivities in the pyramidal neurons were dramatically deceased. However, at this time after I-R in the young groups, they were dramatically increased in the pyramidal neurons. From 7 days after I-R, all the immunoreactivities in the pyramidal neurons in the young ischemia-groups were distinctively decreased. In addition, the levels of all the antioxidants in the CA1 region of the young sham-groups were lower than those in the adult sham-group. Four days after I-R in the adult groups, the levels of all the antioxidants were dramatically deceased; however, at this time in the young ischemia-groups, they were distinctively increased in the CA1 region. Seven days after I-R, all the antioxidants levels in the CA1 region were distinctively decreased. In brief, we conclude that the increased antioxidants levels were related to a less and much delayed neuronal death in the CA1 pyramidal neurons in the young group following I-R injury.


Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus.

  • Eun Joo Bae‎ et al.
  • Neural regeneration research‎
  • 2015‎

The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not been addressed yet. In this study, we first compared ischemia-induced effects on p63 expression in the hippocampal regions (CA1-3) between the young and adult gerbils subjected to 5 minutes of transient global cerebral ischemia. Neuronal death in the hippocampal CA1 region of young gerbils was significantly slow compared with that in the adult gerbils after transient global cerebral ischemia. p63 immunoreactivity in the hippocampal CA1 pyramidal neurons in the sham-operated young group was significantly low compared with that in the sham-operated adult group. p63 immunoreactivity was apparently changed in ischemic hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. In the ischemia-operated adult groups, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons was significantly decreased at 4 days post-ischemia; however, p63 immunoreactivity in the ischemia-operated young group was significantly higher than that in the ischemia-operated adult group. At 7 days post-ischemia, p63 immunoreactivity was decreased in the hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. Change patterns of p63 level in the hippocampal CA1 region of adult and young gerbils after ischemic damage were similar to those observed in the immunohistochemical results. These findings indicate that higher and longer-term expression of p63 in the hippocampal CA1 region of the young gerbils after ischemia/reperfusion may be related to more delayed neuronal death compared to that in the adults.


Intermittent fasting increases the expressions of SODs and catalase in granule and polymorphic cells and enhances neuroblast dendrite complexity and maturation in the adult gerbil dentate gyrus.

  • Ji Hyeon Ahn‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Intermittent fasting (ImF) is known to reduce oxidative stress and affects adult neurogenesis in the hippocampal dentate gyrus. However, it is unknown how ImF affects endogenous antioxidants expressions, cell proliferation, and neuroblast differentiation and their dendrite remodeling over 3 months in the dentate gyrus of adult gerbils. The present study subjected 6‑month old male gerbils to a normal diet or alternate‑day ImF for 1, 2 and 3 months. Changes in body weight were not significantly different between gerbils fed a normal diet and on ImF. The present study also investigated the effects of ImF on antioxidant enzymes [superoxide dismutase (SOD)‑1, SOD2 and catalase] using immunohistochemistry, and endogenous cell proliferation, neuroblast differentiation and neuroblast dendrite complexity by using Ki67 (a cell proliferation marker) and doublecortin (neuroblast differentiation marker) immunohistochemistry in the dentate gyrus. SOD1, SOD2 and CAT immunoreactivities were shown in cells in the granule cell and polymorphic layers. SOD1, SOD2 and catalase immunoreactivity in the cells peaked at 2, 1 and 1 month, respectively, following ImF. Cell proliferation was ~250, 129 and 186% of the control, at 1, 2 and 3 months of ImF, respectively. Neuroblast differentiation was ~41, 32 and 12% of the control, at 1, 2 and 3 months of ImF, respectively, indicating that dendrites of neuroblasts were more arborized and developed at 3 months of ImF. Taken together, these results indicate that ImF for 3 months improves endogenous SOD1, SOD2 and catalase expressions and enhances cell proliferation, and neuroblast dendrites complexity and maturation in the adult gerbil dentate gyrus.


Age-dependent changes of p53 and p63 immunoreactivities in the mouse hippocampus.

  • Tae-Kyeong Lee‎ et al.
  • Laboratory animal research‎
  • 2019‎

P53 and its family member p63 play important roles in cellular senescence and organismal aging. In this study, p53 and p63 immunoreactivity were examined in the hippocampus of young, adult and aged mice by using immunohistochemistry. In addition, neuronal distribution and degeneration was examined by NeuN immunohistochemistry and fluoro-Jade B fluorescence staining. Strong p53 immunoreactivity was mainly expressed in pyramidal and granule cells of the hippocampus in young mice. p53 immunoreactivity in the pyramidal and granule cells was significantly reduced in the adult mice. In the aged mice, p53 immunoreactivity in the pyramidal and granule cells was more significantly decreased. p63 immunoreactivity was strong in the pyramidal and granule cells in the young mice. p63 immunoreactivity in these cells was apparently and gradually decreased with age, showing that p63 immunoreactivity in the aged granule cells was hardly shown. However, numbers of pyramidal neurons and granule cells were not significantly decreased in the aged mice with normal aging. Taken together, this study indicates that there are no degenerative neurons in the hippocampus during normal aging, showing that p53 and p63 immunoreactivity in hippocampal neurons was progressively reduced during normal aging, which might be closely related to the normal aging processes.


Melatonin ameliorates cuprizone-induced reduction of hippocampal neurogenesis, brain-derived neurotrophic factor, and phosphorylation of cyclic AMP response element-binding protein in the mouse dentate gyrus.

  • Woosuk Kim‎ et al.
  • Brain and behavior‎
  • 2019‎

The aim of this study was to investigate the effects of cuprizone on adult hippocampal neurogenesis in naïve mice. Additionally, we also studied how melatonin affects the neuronal degeneration induced by cuprizone.


Age‑dependent decreases in insulin‑like growth factor‑I and its receptor expressions in the gerbil olfactory bulb.

  • Tae-Kyeong Lee‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Insulin‑like growth factor‑I (IGF‑I) is a multifunctional protein present in the central nervous system. A number of previous studies have revealed alterations in IGF‑I and its receptor (IGF‑IR) expression in various regions of the brain. However, there are few reports on age‑dependent alterations in IGF‑I and IGF‑IR expressions in the olfactory bulb, which contains the secondary neurons of the olfactory system. The present study examined the cellular morphology in the olfactory bulb by using cresyl violet (CV) staining at postnatal month (PM) 3 in the young group, PM 6 in the adult group and PM 24 in the aged group in gerbils. In addition, detailed examinations were performed of the protein levels and immunoreactivities of IGF‑I and IGF‑IR in the olfactory bulb in each group. There were no significant changes in the cellular morphology between the three groups. The protein levels and immunoreactivities of the IGF‑I and IGF‑IR were the highest in the young group and they decreased with age. He protein levels and immunoreactivities of the IGF‑I and IGF‑IR were the lowest in the aged group. In brief, our results indicate that IGF‑I and IGF‑IR expressions are strong in young olfactory bulbs and significantly reduced in aged olfactory bulbs. In conclusion, subsequent decreases in IGF‑I and IGF‑IR expression with age may be associated with olfactory decline. Further studies are required to investigate the roles of IFG‑I and IGF‑IR in disorders of the olfactory system.


Age-dependent changes in vesicular glutamate transporter 1 and 2 expression in the gerbil hippocampus.

  • Hyo Young Jung‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Glutamate is a major excitatory neurotransmitter that is stored in vesicles located in the presynaptic terminal. Glutamate is transported into vesicles via the vesicular glutamate transporter (VGLUT). In the present study, the age‑associated changes of the major VGLUTs, VGLUT1 and VGLUT2, in the hippocampus were investigated, based on immunohistochemistry and western blot analysis at postnatal month 1 (PM1; adolescent), PM6, PM12 (adult group), PM18 and PM24 (the aged groups). VGLUT1 immunoreactivity was primarily detected in the mossy fibers, Schaffer collaterals and stratum lacunosum‑moleculare. By contrast, VGLUT2 immunoreactivity was observed in the granule cell layer and the outer molecular layer of the dentate gyrus, stratum pyramidale, Schaffer collaterals and stratum lacunosum‑moleculare in the hippocampal CA1‑3 regions. VGLUT1 immunoreactivity and protein levels remained constant across all age groups. However, VGLUT2 immunoreactivity and protein levels decreased in the PM3 group when compared with the PM1 group. VGLUT2 immunoreactivity and protein levels were not altered in the PM12 group; however, they increased in the PM18 group. In addition, in the PM18 group, highly immunoreactive VGLUT2 cells were also identified in the stratum radiatum and oriens of the hippocampal CA1 region. In the PM24 group, VGLUT2 immunoreactivity and protein levels were significantly decreased and were the lowest levels observed amongst the different groups. These results suggested that VGLUT1 may be less susceptible to the aging process; however, the increase of VGLUT2 in the non‑pyramidal cells in the PM18 group, and the consequent decrease in VGLUT2, may be closely linked to age‑associated memory impairment in the hippocampus.


Immunoreactivities of calbindin‑D28k, calretinin and parvalbumin in the somatosensory cortex of rodents during normal aging.

  • Ji Hyeon Ahn‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Calbindin‑D28k (CB), calretinin (CR) and parvalbumin (PV), which regulate cytosolic free Ca2+ concentrations in neurons, are chemically expressed in γ‑aminobutyric acid (GABA)ergic neurons that regulate the degree of glutamatergic excitation and output of projection neurons. The present study investigated age‑associated differences in CB, CR and PV immunoreactivities in the somatosensory cortex in three species (mice, rats and gerbils) of young (1 month), adult (6 months) and aged (24 months) rodents, using immunohistochemistry and western blotting. Abundant CB‑immunoreactive neurons were distributed in layers II and III, and age‑associated alterations in their number were different according to the species. CR‑immunoreactive neurons were not abundant in all layers; however, the number of CR‑immunoreactive neurons was the highest in all adult species. Many PV‑immunoreactive neurons were identified in all layers, particularly in layers II and III, and they increased in all layers with age in all species. The present study demonstrated that the distribution pattern of CB‑, CR‑ and PV‑containing neurons in the somatosensory cortex were apparently altered in number with normal aging, and that CB and CR exhibited a tendency to decrease in aged rodents, whereas PV tended to increase with age. These results indicate that CB, CR and PV are markedly altered in the somatosensory cortex, and this change may be associated with normal aging. These findings may aid the elucidation of the mechanisms of aging and geriatric disease.


Laminarin Pretreatment Provides Neuroprotection against Forebrain Ischemia/Reperfusion Injury by Reducing Oxidative Stress and Neuroinflammation in Aged Gerbils.

  • Joon Ha Park‎ et al.
  • Marine drugs‎
  • 2020‎

Laminarin is a polysaccharide isolated from brown algae that has various biological and pharmacological activities, such as antioxidant and anti-inflammatory properties. We recently reported that pretreated laminarin exerted neuroprotection against transient forebrain ischemia/reperfusion (IR) injury when we pretreated with 50 mg/kg of laminarin once a day for seven days in adult gerbils. However, there have been no studies regarding a neuroprotective effect of pretreated laminarin against IR injury in aged animals and its related mechanisms. Therefore, in this study, we intraperitoneally inject laminarin (50 mg/kg) once a day to aged gerbils for seven days before IR (5-min transient ischemia) surgery and examine the neuroprotective effect of laminarin treatment and the mechanisms in the gerbil hippocampus. IR injury in vehicle-treated gerbils causes loss (death) of pyramidal neurons in the hippocampal CA1 field at five days post-IR. Pretreatment with laminarin effectively protects the CA1 pyramidal neurons from IR injury. Regarding the laminarin-treated gerbils, production of superoxide anions, 4-hydroxy-2-nonenal expression and pro-inflammatory cytokines [interleukin(IL)-1β and tumor necrosis factor-α] expressions are significantly decreased in the CA1 pyramidal neurons after IR. Additionally, laminarin treatment significantly increases expressions of superoxide dismutase and anti-inflammatory cytokines (IL-4 and IL-13) in the CA1 pyramidal neurons before and after IR. Taken together, these findings indicate that laminarin can protect neurons from ischemic brain injury in an aged population by attenuating IR-induced oxidative stress and neuroinflammation.


Increased Calbindin D28k Expression via Long-Term Alternate-Day Fasting Does Not Protect against Ischemia-Reperfusion Injury: A Focus on Delayed Neuronal Death, Gliosis and Immunoglobulin G Leakage.

  • Hyejin Sim‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Calbindin-D28k (CB), a calcium-binding protein, mediates diverse neuronal functions. In this study, adult gerbils were fed a normal diet (ND) or exposed to intermittent fasting (IF) for three months, and were randomly assigned to sham or ischemia operated groups. Ischemic injury was induced by transient forebrain ischemia for 5 min. Short-term memory was examined via passive avoidance test. CB expression was investigated in the Cornu Ammonis 1 (CA1) region of the hippocampus via western blot analysis and immunohistochemistry. Finally, histological analysis was used to assess neuroprotection and gliosis (microgliosis and astrogliosis) in the CA1 region. Short-term memory did not vary significantly between ischemic gerbils with IF and those exposed to ND. CB expression was increased significantly in the CA1 pyramidal neurons of ischemic gerbils with IF compared with that of gerbils fed ND. However, the CB expression was significantly decreased in ischemic gerbils with IF, similarly to that of ischemic gerbils exposed to ND. The CA1 pyramidal neurons were not protected from ischemic injury in both groups, and gliosis (astrogliosis and microgliosis) was gradually increased with time after ischemia. In addition, immunoglobulin G was leaked into the CA1 parenchyma from blood vessels and gradually increased with time after ischemic insult in both groups. Taken together, our study suggests that IF for three months increases CB expression in hippocampal CA1 pyramidal neurons; however, the CA1 pyramidal neurons are not protected from transient forebrain ischemia. This failure in neuroprotection may be attributed to disruption of the blood-brain barrier, which triggers gliosis after ischemic insults.


Therapeutic Hypothermia Improves Hind Limb Motor Outcome and Attenuates Oxidative Stress and Neuronal Damage in the Lumbar Spinal Cord Following Cardiac Arrest.

  • Ji Hyeon Ahn‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2020‎

: Hypothermia enhances outcomes of patients after resuscitation after cardiac arrest (CA). However, the underlying mechanism is not fully understood. In this study, we investigated effects of hypothermic therapy on neuronal damage/death, microglial activation, and changes of endogenous antioxidants in the anterior horn in the lumbar spinal cord in a rat model of asphyxial CA (ACA). A total of 77 adult male Sprague-Dawley rats were randomized into five groups: normal, sham ACA plus (+) normothermia, ACA + normothermia, sham ACA + hypothermia, and ACA + hypothermia. ACA was induced for 5 min by injecting vecuronium bromide. Therapeutic hypothermia was applied after return of spontaneous circulation (ROSC) via rapid cooling with isopropyl alcohol wipes, which was maintained at 33 ± 0.5 °C for 4 h. Normothermia groups were maintained at 37 ± 0.2 °C for 4 h. Neuronal protection, microgliosis, oxidative stress, and changes of endogenous antioxidants were evaluated at 12 h, 1 day, and 2 days after ROSC following ACA. ACA resulted in neuronal damage from 12 h after ROSC and evoked obvious degeneration/loss of spinal neurons in the ventral horn at 1 day after ACA, showing motor deficit of the hind limb. In addition, ACA resulted in a gradual increase in microgliosis with time after ACA. Therapeutic hypothermia significantly reduced neuronal loss and attenuated hind limb dysfunction, showing that hypothermia significantly attenuated microgliosis. Furthermore, hypothermia significantly suppressed ACA-induced increases of superoxide anion production and 8-hydroxyguanine expression, and significantly increased superoxide dismutase 1 (SOD1), SOD2, catalase, and glutathione peroxidase. Taken together, hypothermic therapy was found to have a substantial impact on changes in ACA-induced microglia activation, oxidative stress factors, and antioxidant enzymes in the ventral horn of the lumbar spinal cord, which closely correlate with neuronal protection and neurological performance after ACA.


Neuronal injury and tumor necrosis factor-alpha immunoreactivity in the rat hippocampus in the early period of asphyxia-induced cardiac arrest under normothermia.

  • Hyun-Jin Tae‎ et al.
  • Neural regeneration research‎
  • 2017‎

Low survival rate occurs in patients who initially experience a spontaneous return of circulation after cardiac arrest (CA). In this study, we induced asphyxial CA in adult male Sprague-Daley rats, maintained their body temperature at 37 ± 0.5°C, and then observed the survival rate during the post-resuscitation phase. We examined neuronal damage in the hippocampus using cresyl violet (CV) and Fluore-Jade B (F-J B) staining, and pro-inflammatory response using ionized calcium-binding adapter molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), and tumor necrosis factor-alpha (TNF-α) immunohistochemistry in the hippocampus after asphyxial CA in rats under normothermia. Our results show that the survival rate decreased gradually post-CA (about 63% at 6 hours, 37% at 1 day, and 8% at 2 days post-CA). Rats were sacrificed at these points in time post-CA, and no neuronal damage was found in the hippocampus until 1 day post-CA. However, some neurons in the stratum pyramidale of the CA region in the hippocampus were dead 2 days post-CA. Iba-1 immunoreactive microglia in the CA1 region did not change until 1 day post-CA, and they were activated (enlarged cell bodies with short and thicken processes) in all layers 2 days post-CA. Meanwhile, GFAP-immunoreactive astrocytes did not change significantly until 2 days post-CA. TNF-α immunoreactivity decreased significantly in neurons of the stratum pyramidale in the CA1 region 6 hours post-CA, decreased gradually until 1 day post-CA, and increased significantly again 2 days post-CA. These findings suggest that low survival rate of normothermic rats in the early period of asphyxia-induced CA is related to increased TNF-α immunoreactivity, but not to neuronal damage in the hippocampal CA1 region.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: