Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

A chimeric yellow fever-Zika virus vaccine candidate fully protects against yellow fever virus infection in mice.

  • Dieudonné Buh Kum‎ et al.
  • Emerging microbes & infections‎
  • 2020‎

The recent Zika virus (ZIKV) epidemic in the Americas, followed by the yellow fever virus (YFV) outbreaks in Angola and Brazil highlight the urgent need for safe and efficient vaccines against the ZIKV as well as much greater production capacity for the YFV-17D vaccine. Given that the ZIKV and the YFV are largely prevalent in the same geographical areas, vaccines that would provide dual protection against both pathogens may obviously offer a significant benefit. We have recently engineered a chimeric vaccine candidate (YF-ZIKprM/E) by swapping the sequences encoding the YFV-17D surface glycoproteins prM/E by the corresponding sequences of the ZIKV. A single vaccine dose of YF-ZIKprM/E conferred complete protection against a lethal challenge with wild-type ZIKV strains. Surprisingly, this vaccine candidate also efficiently protected against lethal YFV challenge in various mouse models. We demonstrate that CD8+ but not CD4+ T cells, nor ZIKV neutralizing antibodies are required to confer protection against YFV. The chimeric YF-ZIKprM/E vaccine may thus be considered as a dual vaccine candidate efficiently protecting mice against both the ZIKV and the YFV, and this following a single dose immunization. Our finding may be particularly important in the rational design of vaccination strategies against flaviviruses, in particular in areas where YFV and ZIKV co-circulate.


Comparing immunogenicity and protective efficacy of the yellow fever 17D vaccine in mice.

  • Ji Ma‎ et al.
  • Emerging microbes & infections‎
  • 2021‎

The live-attenuated yellow fever 17D (YF17D) vaccine is one of the most efficacious human vaccines and also employed as a vector for novel vaccines. However, in the lack of appropriate immunocompetent small animal models, mechanistic insight in YF17D-induced protective immunity remains limited. To better understand YF17D vaccination and to identify a suitable mouse model, we evaluated the immunogenicity and protective efficacy of YF17D in five complementary mouse models, i.e. wild-type (WT) BALB/c, C57BL/6, IFN-α/β receptor (IFNAR-/-) deficient mice, and in WT mice in which type I IFN signalling was temporally ablated by an IFNAR blocking (MAR-1) antibody. Alike in IFNAR-/- mice, YF17D induced in either WT mice strong humoral immune responses dominated by IgG2a/c isotype (Th1 type) antibodies, yet only when IFNAR was blocked. Vigorous cellular immunity characterized by CD4+ T-cells producing IFN-γ and TNF-α were mounted in MAR-1 treated C57BL/6 and in IFNAR-/- mice. Surprisingly, vaccine-induced protection was largely mouse model dependent. Full protection against lethal intracranial challenge and a massive reduction of virus loads was conferred already by a minimal dose of 2 PFU YF17D in BALB/c and IFNAR-/- mice, but not in C57BL/6 mice. Correlation analysis of infection outcome with pre-challenge immunological markers indicates that YFV-specific IgG might suffice for protection, even in the absence of detectable levels of neutralizing antibodies. Finally, we propose that, in addition to IFNAR-/- mice, C57BL/6 mice with temporally blocked IFN-α/β receptors represent a promising immunocompetent mouse model for the study of YF17D-induced immunity and evaluation of YF17D-derived vaccines.


YF17D-vectored Ebola vaccine candidate protects mice against lethal surrogate Ebola and yellow fever virus challenge.

  • Viktor Lemmens‎ et al.
  • NPJ vaccines‎
  • 2023‎

Ebola virus (EBOV) and related filoviruses such as Sudan virus (SUDV) threaten global public health. Effective filovirus vaccines are available only for EBOV, yet restricted to emergency use considering a high reactogenicity and demanding logistics. Here we present YF-EBO, a live YF17D-vectored dual-target vaccine candidate expressing EBOV glycoprotein (GP) as protective antigen. Safety of YF-EBO in mice was further improved over that of parental YF17D vaccine. A single dose of YF-EBO was sufficient to induce high levels of EBOV GP-specific antibodies and cellular immune responses, that protected against lethal infection using EBOV GP-pseudotyped recombinant vesicular stomatitis virus (rVSV-EBOV) in interferon-deficient (Ifnar-/-) mice as surrogate challenge model. Concomitantly induced yellow fever virus (YFV)-specific immunity protected Ifnar-/- mice against intracranial YFV challenge. YF-EBO could thus help to simultaneously combat both EBOV and YFV epidemics. Finally, we demonstrate how to target other highly pathogenic filoviruses such as SUDV at the root of the 2022 outbreak in Uganda.


A Chimeric Japanese Encephalitis Vaccine Protects against Lethal Yellow Fever Virus Infection without Inducing Neutralizing Antibodies.

  • Niraj Mishra‎ et al.
  • mBio‎
  • 2020‎

Recent outbreaks of yellow fever virus (YFV) in West Africa and Brazil resulted in rapid depletion of global vaccine emergency stockpiles and raised concerns about being unprepared against future YFV epidemics. Here we report that a live attenuated virus similar to the Japanese encephalitis virus (JEV) vaccine JE-CVax/Imojev that consists of YFV-17D vaccine from which the structural (prM/E) genes have been replaced with those of the JEV SA14-14-2 vaccine strain confers full protection in mice against lethal YFV challenge. In contrast to the YFV-17D-mediated protection against YFV, this protection is not mediated by neutralizing antibodies but correlates with YFV-specific nonneutralizing antibodies and T cell responses against cell-associated YFV NS1 and other YFV nonstructural (NS) proteins. Our findings reveal the potential of YFV NS proteins to mediate protection and demonstrate that chimeric flavivirus vaccines, such as Imojev, could confer protection against two flaviviruses. This dual protection may have implications for the possible off-label use of JE-CVax in case of emergency and vaccine shortage during YFV outbreaks. In addition, populations in Asia that have been vaccinated with Imojev may already be protected against YFV should outbreaks ever occur on that continent, as several countries/regions in the Asia-Pacific are vulnerable to international spread of the YFV.IMPORTANCE Efficient and safe vaccines against yellow fever (e.g., YFV-17D) that provide long-lasting protection by rapidly inducing neutralizing antibody responses exist. However, the vaccine supply cannot cope with an increasing demand posed by urban outbreaks in recent years. Here we report that JE-CVax/Imojev, a YFV-17D-based chimeric Japanese encephalitis vaccine, also efficiently protects against YFV infection in mice. In case of shortage of the YFV vaccine during yellow fever outbreaks, (off-label) use of JE-CVax/Imojev may be considered. Moreover, wider use of JE-CVax/Imojev in Asia may lower the risk of the much-feared YFV spillover to the continent. More generally, chimeric vaccines that combine surface antigens and replication machineries of two distinct flaviviruses may be considered dual vaccines for the latter pathogen without induction of surface-specific antibodies. Following this rationale, novel flavivirus vaccines that do not hold a risk for antibody-dependent enhancement (ADE) of infection (inherent to current dengue vaccines and dengue vaccine candidates) could be designed.


A yellow fever-Zika chimeric virus vaccine candidate protects against Zika infection and congenital malformations in mice.

  • Dieudonné B Kum‎ et al.
  • NPJ vaccines‎
  • 2018‎

The recent Zika virus (ZIKV) epidemic in the Americas led to an intense search for therapeutics and vaccines. Here we report the engineering of a chimeric virus vaccine candidate (YF-ZIKprM/E) by replacing the antigenic surface glycoproteins and the capsid anchor of YFV-17D with those of a prototypic Asian lineage ZIKV isolate. By intracellular passaging, a variant with adaptive mutations in the E protein was obtained. Unlike YFV-17D, YF-ZIKprM/E replicates poorly in mosquito cells. Also, YF-ZIKprM/E does not cause disease nor mortality in interferon α/β, and γ receptor KO AG129 mice nor following intracranial inoculation of BALB/c pups. A single dose as low as 1 × 102 PFU results, as early as 7 days post vaccination, in seroconversion to neutralizing antibodies and confers full protection in AG129 mice against stringent challenge with a lethal inoculum (105 LD50) of either homologous or heterologous ZIKV strains. Induction of multi-functional CD4+ and CD8+ T cell responses against ZIKV structural and YFV-17D non-structural proteins indicates that cellular immunity may also contribute to protection. Vaccine immunogenicity and protection was confirmed in other mouse strains, including after temporal blockade of interferon-receptors in wild-type mice to facilitate ZIKV replication. Vaccination of wild-type NMRI dams with YF-ZIKprM/E results in complete protection of foetuses against brain infections and malformations following a stringent intraplacental challenge with an epidemic ZIKV strain. The particular characteristic of YF-ZIKprM/E in terms of efficacy and its marked attenuation in mice warrants further exploration as a vaccine candidate.


A High-Throughput Yellow Fever Neutralization Assay.

  • Madina Rasulova‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Quick and accurate detection of neutralizing antibodies (nAbs) against yellow fever is essential in serodiagnosis during outbreaks for surveillance and to evaluate vaccine efficacy in population-wide studies. All of this requires serological assays that can process a large number of samples in a highly standardized format. Albeit being laborious, time-consuming, and limited in throughput, the classical plaque reduction neutralization test (PRNT) is still considered the gold standard for the detection and quantification of nAbs due to its sensitivity and specificity. Here, we report the development of an alternative fluorescence-based serological assay (SNTFLUO) with an equally high sensitivity and specificity that is fit for high-throughput testing with the potential for automation. Finally, our novel SNTFLUO was cross-validated in several reference laboratories and against international WHO standards, showing its potential to be implemented in clinical use. SNTFLUO assays with similar performance are available for the Japanese encephalitis, Zika, and dengue viruses amenable to differential diagnostics. IMPORTANCE Fast and accurate detection of neutralizing antibodies (nAbs) against yellow fever virus (YFV) is key in yellow fever serodiagnosis, outbreak surveillance, and monitoring of vaccine efficacy. Although classical PRNT remains the gold standard for measuring YFV nAbs, this methodology suffers from inherent limitations such as low throughput and overall high labor intensity. We present a novel fluorescence-based serum neutralization test (SNTFLUO) with equally high sensitivity and specificity that is fit for processing a large number of samples in a highly standardized manner and has the potential to be implemented for clinical use. In addition, we present SNTFLUO assays with similar performance for Japanese encephalitis, Zika, and dengue viruses, opening new avenues for differential diagnostics.


Small-molecule inhibitors of TBK1 serve as an adjuvant for a plasmid-launched live-attenuated yellow fever vaccine.

  • Sapna Sharma‎ et al.
  • Human vaccines & immunotherapeutics‎
  • 2020‎

Plasmid-launched live-attenuated vaccines (PLLAV), also called infectious DNA (iDNA) vaccines, combine the assets of genetic immunization with the potency of replication-competent live viral vaccines. However, due to their origin as bacterial plasmid DNA, efficient delivery of PLLAV may be hampered by innate signaling pathways such as the cGAS-STING-mediated sensing of cytosolic DNA, resulting in an unfavorable proinflammatory and antiviral response locally at the site of immunization. Employing several complementary cell-based systems and using the yellow fever vaccine (YF17D) and the respective PLLAV-YF17D, we screened a panel of small molecules known to interfere with antiviral signaling for their proviral activity and identified two potent inhibitors of the TANK-binding kinase 1 (TBK1), BX795 and CYT387, to enhance YF17D replication and hence efficacy of PLLAV-YF17D transfection. In tissue culture, BX795 could fully revert the block that plasmid transfection poses on YF17D infection in a type I interferon dependent manner, as confirmed by (i) a marked change in gene expression signatures, (ii) a rescue of full YF17D replication, and (iii) a massively increased virus yield. Inhibitors of TBK1 may hence be considered an adjuvant to potentiate novel PLLAV vaccines, which might boost PLLAV delivery toward their use in vivo.


Live-attenuated YF17D-vectored COVID-19 vaccine protects from lethal yellow fever virus infection in mouse and hamster models.

  • Ji Ma‎ et al.
  • EBioMedicine‎
  • 2022‎

The live-attenuated yellow fever vaccine YF17D holds great promise as alternative viral vector vaccine platform, showcased by our previously presented potent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine candidate YF-S0. Besides protection from SARS-CoV-2, YF-S0 also induced strong yellow fever virus (YFV)-specific immunity, suggestive for full dual activity. A vaccine concomitantly protecting from SARS-CoV-2 and YFV would be of great benefit for those living in YFV-endemic areas with limited access to current SARS-CoV-2 vaccines. However, for broader applicability, pre-existing vector immunity should not impact the potency of such YF17D-vectored vaccines.


Limited evolution of the yellow fever virus 17d in a mouse infection model.

  • Dieudonné Buh Kum‎ et al.
  • Emerging microbes & infections‎
  • 2019‎

By infecting mice with the yellow fever virus vaccine strain 17D (YFV-17D; Stamaril®), the dose dependence and evolutionary consequences of neurotropic yellow fever infection was assessed. Highly susceptible AG129 mice were used to allow for a maximal/unlimited expansion of the viral populations. Infected mice uniformly developed neurotropic disease; the virus was isolated from their brains, plaque purified and sequenced. Viral RNA populations were overall rather homogenous [Shannon entropies 0-0.15]. The remaining, yet limited intra-host population diversity (0-11 nucleotide exchanges per genome) appeared to be a consequence of pre-existing clonal heterogeneities (quasispecies) of Stamaril®. In parallel, mice were infected with a molecular clone of YFV-17D which was in vivo launched from a plasmid. Such plasmid-launched YFV-17D had a further reduced and almost clonal evolution. The limited intra-host evolution during unrestricted expansion in a highly susceptible host is relevant for vaccine and drug development against flaviviruses in general. Firstly, a propensity for limited evolution even upon infection with a (very) low inoculum suggests that fractional dosing as implemented in current YF-outbreak control may pose only a limited risk of reversion to pathogenic vaccine-derived virus variants. Secondly, it also largely lowers the chance of antigenic drift and development of resistance to antivirals.


Biodistribution and environmental safety of a live-attenuated YF17D-vectored SARS-CoV-2 vaccine candidate.

  • Li-Hsin Li‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2022‎

New platforms are needed for the design of novel prophylactic vaccines and advanced immune therapies. Live-attenuated yellow fever vaccine YF17D serves as a vector for several licensed vaccines and platform for novel candidates. On the basis of YF17D, we developed an exceptionally potent COVID-19 vaccine candidate called YF-S0. However, use of such live RNA viruses raises safety concerns, such as adverse events linked to original YF17D (yellow fever vaccine-associated neurotropic disease [YEL-AND] and yellow fever vaccine-associated viscerotropic disease [YEL-AVD]). In this study, we investigated the biodistribution and shedding of YF-S0 in hamsters. Likewise, we introduced hamsters deficient in signal transducer and activator of transcription 2 (STAT2) signaling as a new preclinical model of YEL-AND/AVD. Compared with YF17D, YF-S0 showed improved safety with limited dissemination to brain and visceral tissues, absent or low viremia, and no shedding of infectious virus. Considering that yellow fever virus is transmitted by Aedes mosquitoes, any inadvertent exposure to the live recombinant vector via mosquito bites is to be excluded. The transmission risk of YF-S0 was hence compared with readily transmitting YF-Asibi strain and non-transmitting YF17D vaccine, with no evidence for productive infection of mosquitoes. The overall favorable safety profile of YF-S0 is expected to translate to other vaccines based on the same YF17D platform.


Updated vaccine protects against SARS-CoV-2 variants including Omicron (B.1.1.529) and prevents transmission in hamsters.

  • Sapna Sharma‎ et al.
  • Nature communications‎
  • 2022‎

Current COVID-19 vaccines are based on prototypic spike sequences from ancestral 2019 SARS-CoV-2 strains. However, the ongoing pandemic is fueled by variants of concern (VOC) escaping vaccine-mediated protection. Here we demonstrate how immunization in hamsters using prototypic spike expressed from yellow fever 17D (YF17D) as vector blocks ancestral virus (B lineage) and VOC Alpha (B.1.1.7) yet fails to fully protect from Beta (B.1.351). However, the same YF17D vectored vaccine candidate with an evolved antigen induced considerably improved neutralizing antibody responses against VOCs Beta, Gamma (P.1) and the recently predominant Omicron (B.1.1.529), while maintaining immunogenicity against ancestral virus and VOC Delta (B.1.617.2). Thus vaccinated animals resisted challenge by all VOCs, including vigorous high titre exposure to the most difficult to cover Beta, Delta and Omicron variants, eliminating detectable virus and markedly improving lung pathology. Finally, vaccinated hamsters did not transmit Delta variant to non-vaccinated cage mates. Overall, our data illustrate how current first-generation COVID-19 vaccines may need to be updated to maintain efficacy against emerging VOCs and their spread at community level.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: