Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 17 papers out of 17 papers

Design, synthesis and molecular modeling of aloe-emodin derivatives as potent xanthine oxidase inhibitors.

  • Da-Hua Shi‎ et al.
  • European journal of medicinal chemistry‎
  • 2014‎

A series of aloe-emodin derivatives were synthesized and evaluated as xanthine oxidase inhibitors. Among them, four aloe-emodin derivatives showed significant inhibitory activities against xanthine oxidase. The compound 4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-carbaldehyde (A1) possessed the best xanthine oxidase inhibitory activity with IC50 of 2.79 μM. Lineweaver-Burk plot analysis revealed that A1 acted as a mixed-type inhibitor for xanthine oxidase. The docking study revealed that the molecule A1 had strong interactions with the active site of xanthine oxidase and this result was in agreement with kinetic study. Consequently, compound A1 is a new-type candidate for further development for the treatment of gout.


Ligand-based design, synthesis and biological evaluation of xanthine derivatives as LSD1/KDM1A inhibitors.

  • Qi-Sheng Ma‎ et al.
  • European journal of medicinal chemistry‎
  • 2019‎

Histone lysine specific demethylase 1 (LSD1) has been recognized as an important epigenetic target for disease treatment. To date, a large number of LSD1 inhibitors have been developed, some of which are currently being evaluated in clinical trials for the treatment of cancers, virus infection, and neurodegenerative diseases. In this paper, we for the first time reported the ligand-based design of fragment-like xanthine derivatives as LSD1 inhibitors, of which compound 4 possessed acceptable pharmacological inhibition against LSD1 (IC50 = 6.45 μM) and favorable fragment-like nature, and therefore could be used as a promising template to design new LSD1 inhibitors. Interestingly, compounds 6c and 6i strongly suppressed growth of MGC-803 cells partly dependent on their LSD1 inhibition, and were also found to be able to inhibit BRD4 and IDO1. The docking studies were performed to rationalize the biochemical potency against LSD1 and to explain the observed activity discrepancy. The proof-of-concept work may provide an example for other natural ligand-based drug design.


Synthesis, screening and docking of fused pyrano[3,2-d]pyrimidine derivatives as xanthine oxidase inhibitor.

  • Manroopraj Kaur‎ et al.
  • European journal of medicinal chemistry‎
  • 2017‎

In view of developing effective xanthine oxidase (XO) enzyme inhibitors, a series of 100 pyrano[3,2-d]pyrimidine derivatives was synthesized and evaluated for its in vitro XO enzyme inhibition. Structure activity relationship has also been established. Among all the synthesized compounds, 4d, 8d and 9d were found to be the most potent enzyme inhibitors with IC50 values of 8μM, 8.5μM and 7μM, respectively. Compound 9d was further investigated in enzyme kinetic studies and the Lineweaver-Burk plot revealed that the compound 9d was mixed type inhibitor. Molecular properties of the most potent compounds 4d, 8d and 9d, have also been calculated. Docking study was performed to investigate the recognition pattern between xanthine oxidase and the most potent XO inhibitor, 9d. The study suggests that 9d may block the activity of XO sufficiently enough to prevent the substrate from binding to its active site.


Identification of novel xanthine oxidase inhibitors via virtual screening with enhanced characterization of molybdopterin binding groups.

  • Lu Zhang‎ et al.
  • European journal of medicinal chemistry‎
  • 2022‎

Xanthine oxidase (XO) is an important therapeutic target for the treatment of hyperuricemia and gout. A virtual screening strategy with enhanced characterization of the molybdopterin binding group (MBG) was applied for the identification of novel XO inhibitors. Briefly, a 3D QSAR pharmacophore with fragment recognition capability was constructed by setting the MBG as a customized-pharmacophore feature. In addition, 2D QSAR was established with descriptors based on density functional theory (DFT), physical and chemical properties as well as topological properties. Descriptors related to metal ion recognition were emphasized to enhance the characterization of the MBG and to improve the screening efficiency. The 3D and 2D QSAR models were combined with the pharmacophore derived from XO-inhibitor complexes and docking with hydrogen bond constraints to screen the compound library of Specs. After two rounds of screening, six compounds with significant inhibition against XO were identified and the most active one XO-33 showed an IC50 of 23.3 nM. These compounds are structurally distinct from the known XO inhibitors, and provide new chemical prototypes for further discovery of potent and novel XO inhibitors.


Synthesis and bioevaluation of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acids as potent xanthine oxidase inhibitors.

  • Qi Guan‎ et al.
  • European journal of medicinal chemistry‎
  • 2014‎

A series of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acid derivatives (8a-f, 9a-m) were synthesized and evaluated for inhibitory activity against xanthine oxidase in vitro. Structure-activity relationship analyses have also been presented. Most of the target compounds exhibited potency levels in the nanomolar range. Compound 9e emerged as the most potent xanthine oxidase inhibitor (IC50 = 5.5 nM) in comparison to febuxostat (IC50 = 18.6 nM). Steady-state kinetics measurements with the bovine milk enzyme indicated a mixed type inhibition with Ki and Ki' values of 0.9 and 2.3 nM, respectively. A molecular modeling study on compounds 9e was performed to gain an insight into its binding mode with xanthine oxidase, and to provide the basis for further structure-guided design of new non-purine xanthine oxidase inhibitors related with 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acid scaffold.


Xanthine oxidase inhibitory activity of natural and hemisynthetic flavonoids from Gardenia oudiepe (Rubiaceae) in vitro and molecular docking studies.

  • M D Santi‎ et al.
  • European journal of medicinal chemistry‎
  • 2018‎

Xanthine oxidase (XO), an enzyme widely distributed among mammalian tissues, is associated with the oxidation of xanthine and hypoxanthine to form uric acid. Reactive oxygen species are also released during this process, leading to oxidative damages and to the pathology called gout. Available treatments mainly based on allopurinol cause serious side effects. Natural products such as flavonoids may represent an alternative. Thus, a series of polymethoxyflavones isolated and hemisynthesized from the bud exudates of Gardenia oudiepe has been evaluated for in vitro XO inhibitory activity. Compounds 1, 2 and 3 were more active than the reference inhibitor, Allopurinol (IC50 = 0.25 ± 0.004 μM) with IC50 values of (0.004 ± 0.001) μM, (0.05 ± 0.01) μM and (0.09 ± 0.003) μM, respectively. Structure-activity relationships were established. Additionally, a molecular docking study using MOE™ tool was carried out to establish the binding mode of the most active flavones with the enzyme, showing important interactions with its catalytic residues. These promising results, suggest the use of these compounds as potential leads for the design and development of novel XO inhibitors.


Design, synthesis and biological evaluation of 1-hydroxy-2-phenyl-4-pyridyl-1H-imidazole derivatives as xanthine oxidase inhibitors.

  • Tingjian Zhang‎ et al.
  • European journal of medicinal chemistry‎
  • 2018‎

In our previous study, we reported a series of 1-hydroxy-2-phenyl-1H-imidazole-5-carboxylic acid derivatives that presented excellent in vitro xanthine oxidase inhibitory potency. As a continuation study, a series of 1-hydroxy-2-phenyl-1H-imidazole derivatives containing a pyridine moiety (4a-g and 5a-g) at the 4-position was designed and synthesized. Evaluation of in vitro xanthine oxidase inhibition demonstrated that the 4a-g series was more potent than the 5a-g series. Compound 4f was the most promising derivative in the series with an IC50 value of 0.64 μM. A Lineweaver-Burk plot revealed that compound 4f acted as a mixed-type xanthine oxidase inhibitor. An iso-pentyloxy group at the 4'-position improved the inhibitory potency. More interestingly, structure-activity relationship analysis indicated that the pyridine para-N atom played a crucial role in the inhibition. Molecular modeling provided a reasonable explanation for the structure-activity relationships observed in this study. In addition, a three dimensional quantitative structure-activity relationships model which possessed reasonable statistics (q2 = 0.885 and r2 = 0.993) was conducted to further understand the structural basis of these compounds as xanthine oxidase inhibitors. These compounds, especially compound 4f, have good potential for further investigations.


Design, synthesis and biological evaluation of N-(3-(1H-tetrazol-1-yl)phenyl)isonicotinamide derivatives as novel xanthine oxidase inhibitors.

  • Ting-Jian Zhang‎ et al.
  • European journal of medicinal chemistry‎
  • 2019‎

In our previous study, we reported a series of N-phenylisonicotinamide derivatives as novel xanthine oxidase (XO) inhibitors and identified N-(3-cyano-4-((2-cyanobenzyl)oxy)phenyl)isonicotinamide (compound 1) as the most potent one with an IC50 value of 0.312 μM. To further optimize the structure and improve the potency, a structure-based drug design (SBDD) strategy was performed to construct the missing H-bond between the small molecule and the Asn768 residue of XO. We introduced a tetrazole moiety at the 3'-position of the phenyl to serve as an H-bond acceptor and obtained a series of N-(3-(1H-tetrazol-1-yl)phenyl)isonicotinamide derivatives (2a-t and 6-8). Besides, to investigate the influence of the amide-reversal, some N-(pyridin-4-yl)-3-(1H-tetrazol-1-yl)benzamide derivatives (3c, 3e, 3i, 3k and 3u) were also synthesized and evaluated. Biological evaluation and structure-activity relationship analysis demonstrated that the 3'-(1H-tetrazol-1-yl) moiety was an excellent fragment for the N-phenylisonicotinamide scaffold; a substituted benzyloxy, especially, an m-cyanobenzyloxy (e.g., 2s), linking at the 4'-position was welcome for the potency; and the amide-reversal could damage the potency, so maintenance of the N-phenylisonicotinamide scaffold was essential. In summary, starting from compound 1, the SBDD effort successfully identified a promising XO inhibitor 2s (IC50 = 0.031 μM), with a 10-fold gain in potency. Its potency was very close to the positive control topiroxostat (IC50 = 0.021 μM). A Lineweaver-Burk plot indicated that compound 2s acted as a mixed-type XO inhibitor. Molecular docking and molecular dynamics simulations revealed that the tetrazole moiety could occupy the Asn768-sub-pocket with N-4 atom accepting an H-bond from the Asn768 residue, as expected.


Rapid generation of novel benzoic acid-based xanthine derivatives as highly potent, selective and long acting DPP-4 inhibitors: Scaffold-hopping and prodrug study.

  • Qing Li‎ et al.
  • European journal of medicinal chemistry‎
  • 2019‎

A series of novel xanthine derivatives 2a-l incorporating benzoic acid moieties were rapidly generated by using strategy of scaffold-hopping from our previously reported scaffold uracil to xanthine, a scaffold of approved drug linagliptin. After systematic structure-activity relationship (SAR) study around benzoic acid moieties, 5 novel DPP-4 inhibitors with low picomolar potency range (IC50 < 1 nM) and excellent selectivity against various DPP-4 homologues were identified, in which the best one, compound 2f, with the IC50 value of 0.1 nM for DPP-4, showed 22-fold improvement in inhibitory activity compared to lead compound uracil 1, its activity was 45-fold more potent than alogliptin. 2e, 2f, 2i and 2k were selected for pharmacokinetic evaluation, and 2f and 2i showed the better pharmacokinetic profiles after iv administration, but poor oral bioavailability. To improve the oral pharmacokinetic profile, prodrug design approach was performed around 2f and 2i. Esters of 2f and 2i were synthesized and evaluated for stability, toxicity and pharmacokinetics. Compound 3e, the methyl ester of compound 2f, was identified to demonstrate good stability, low toxicity and improved oral bioavailability, with 3-fold higher blood concentration compared to 2f in rats. The following in vivo evaluations revealed 3e provided a sustained pharmacodynamics effect for 48h, and robustly improved glucose tolerance in normal ICR and db/db mice in dose-dependent manner. Chronic treatments investigations demonstrated that 3e achieved more beneficial effects on fasting blood glucose levels and glucose tolerance than alogliptin in type 2 diabetic db/db mice. The overall results have shown that compound 3e has the potential to efficacious, safety and long-acting treatment for T2DM.


Design, synthesis and biological evaluation of 2-(4-alkoxy-3-cyano)phenyl-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives as novel xanthine oxidase inhibitors.

  • Qing Mao‎ et al.
  • European journal of medicinal chemistry‎
  • 2019‎

In our previous study, we reported a series of 1-hydroxy-2-phenyl-1H-imidazole-5-carboxylic acid derivatives that presented excellent in vitro xanthine oxidase (XO) inhibitory potency. To further investigate the structure-activity relationships of these compounds, the imidazole ring was transformed to a pyrimidine ring to design 2-(4-alkoxy-3-cyano)phenyl-6-oxo-1,6-dihydropyrimidine-5-carboxylic acids (8a-8j), 2-(4-alkoxy-3-cyano)phenyl-4-methyl-6-oxo-1,6-dihydropyrimidine-5-carboxylic acids (9c, 9e, 9j, 9l) and 2-(4-alkoxy-3-cyano)phenyl-6-imino-1,6-dihydropyrimidine-5-carboxylic acids (10c, 10e, 10j, 10l). These compounds exhibited remarkable in vitro XO inhibitory potency with IC50 values ranging from 0.0181 μM to 0.5677 μM. Specifically, compounds 10c and 10e, with IC50 values of 0.0240 μM and 0.0181 μM, respectively, emerged as the most potent XO inhibitors, and their potencies were comparable to that of febuxostat. Structure-activity relationship analysis revealed that the methyl group at 4-position of pyrimidine ring could damage the potency, and the XO inhibitory potency was maintained when carbonyl group was changed to an imino group. Lineweaver-Burk plot analysis revealed that the representative compound 10c acted as a mixed-type inhibitor. A potassium oxonate induced hyperuricemia model in rats was chosen to further confirm the hypouricemic effect of compound 10c, and the results showed that compound 10c (5 mg/kg) was able to significantly lower the serum uric acid level. Furthermore, in acute oral toxicity study, no sign of toxicity was observed when the mice were administered with a single 2000 mg/kg oral dose of compound 10c. These results suggested that compound 10c was a potent and promising uric acid-lowing agent for the treatment of hyperuricemia.


Targeting the subpocket in xanthine oxidase: Design, synthesis, and biological evaluation of 2-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives.

  • Bing Zhang‎ et al.
  • European journal of medicinal chemistry‎
  • 2019‎

Xanthine oxidase is an important target for the treatment of hyperuricemia, gout and other related diseases. Analysis of the high-resolution structure of xanthine oxidase with febuxostat identified the existence of a subpocket formed by the residues Leu648, Asn768, Lys771, Leu1014 and Pro1076. In this study, we designed and synthesized a series of 2-[4-alkoxy-3-(1H-tetrazol-1-yl) phenyl]-6-oxo-1,6-dihydropyrimidine-5-carboxylic acid derivatives (8a-8z) with a tetrazole group targeting this subpocket of the xanthine oxidase active site, and they were further evaluated for their inhibitory potency against xanthine oxidase in vitro. The results showed that all the tested compounds (8a-8z) exhibited an apparent xanthine oxidase inhibitory potency, with IC50 values ranging from 0.0288 μM to 0.629 μM. Among them, compound 8u emerged as the most potent xanthine oxidase inhibitor, with an IC50 value of 0.0288 μM, which was comparable to febuxostat (IC50 = 0.0236 μM). The structure-activity relationship results revealed that the hydrophobic group at the 4'-position was indispensable for the inhibitory potency in vitro against xanthine oxidase. A Lineweaver-Burk plot revealed that the representative compound 8u acted as a mixed-type inhibitor for xanthine oxidase. Furthermore, molecular modeling studies were performed to gain insights into the binding mode of 8u with xanthine oxidase and suggested that the tetrazole group of the phenyl unit was accommodated in the subpocket, as expected. Moreover, a potassium oxonate-induced hyperuricemia model in rats was chosen to further confirm the hypouricemic effect of compound 8u, and the result demonstrated that compound 8u could effectively reduce serum uric acid levels at an oral dose of 5 mg/kg. In addition, acute oral toxicity study in mice indicated that compound 8u was nontoxic and tolerated at a dose up to 2000 mg/kg. Thus, compound 8u could be a potential and efficacious agent in treatment of hyperuricemia with low toxicity.


Design, synthesis, and biological evaluation of N-(3-cyano-1H-indol-5/6-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxamides and 5-(6-oxo-1,6-dihydropyrimidin-2-yl)-1H-indole-3-carbonitriles as novel xanthine oxidase inhibitors.

  • Bing Zhang‎ et al.
  • European journal of medicinal chemistry‎
  • 2022‎

Xanthine oxidase (XO) has been an important target for the treatment of hyperuricemia and gout. The analysis of potential interactions of pyrimidinone and 3-cyano indole pharmacophores present in the corresponding reported XO inhibitors with parts of the XO active pocket indicated that they both can be used as effective fragments for the fragment-based design of nonpurine XO inhibitors. In this paper, we adopted the fragment-based drug design strategy to link the two fragments with an amide bond to design the type 1 compounds 13a-13w,14c, 14d, 14f, 14g, 14j, 14k, and 15g. Compound 13g displayed an evident XO inhibitory potency (IC50 = 0.16 μM), which was 52.3-fold higher than that of allopurinol (IC50 = 8.37 μM). For comparison, type 2 compounds 5-(6-oxo-1,6-dihydropyrimidin-2-yl)-1H-indole-3-carbonitriles (25c-25g) were also designed by linking the two fragments with a single bond directly. The results showed that compound 25c from the latter series displayed the best inhibitory potency (IC50 = 0.085 μM), and it was 98.5-fold stronger than that of allopurinol (IC50 = 8.37 μM). These results suggested that amide and single bonds were applicable for linking the two fragments together to obtain potent nonpurine XO inhibitors. The structure-activity relationship results revealed that hydrophobic groups at N-atom of the indole moiety were indispensable for the improvement of the inhibitory potency in vitro against XO. In addition, enzyme kinetics studies suggested that compounds 13g and 25c, as the most promising XO inhibitors for the two types of target compounds, acted as mixed-type inhibitors for XO. Moreover, molecular modeling studies suggested that the pyrimidinone and indole moieties of the target compounds could interact well with key amino acid residues in the active pocket of XO. Furthermore, in vivo hypouricemic effect demonstrated that compounds 13g and 25c could effectively reduce serum uric acid levels at an oral dose of 10 mg/kg. Therefore, compounds 13g and 25c could be potential and efficacious agents for the treatment of hyperuricemia and gout.


Intramolecular hydrogen bond interruption and scaffold hopping of TMC-5 led to 2-(4-alkoxy-3-cyanophenyl)pyrimidine-4/5-carboxylic acids and 6-(4-alkoxy-3-cyanophenyl)-1,2-dihydro-3H-pyrazolo[3,4-d]pyrimidin-3-ones as potent pyrimidine-based xanthine oxidase inhibitors.

  • Jiaxing Zhao‎ et al.
  • European journal of medicinal chemistry‎
  • 2022‎

Many pyrimidine-based xanthine oxidase (XO) inhibitors with diverse chemotypes have been reported recently. Our previous study revealed that 2-(4-alkoxy-3-cyano)phenyl-6-imino-1,6-dihydropyrimidine-5-carboxylic acid derivatives exhibited remarkable XO inhibitory potency. Notably, an intramolecular hydrogen bond (IMHB) formed between amino and carboxylic groups could be observed. With the hope to expand the structure-activity relationships (SARs) and obtain potential pyrimidine-based XO inhibitors, IMHB interruption and scaffold hopping were carried out on these compounds to design 2-(4-alkoxy-3-cyanophenyl)pyrimidine-4/5-carboxylic acids (11a-11n and 15a-15j) and 6-(4-alkoxy-3-cyanophenyl)-1,2-dihydro-3H-pyrazolo[3,4-d]pyrimidin-3-ones (19a-19j). Among them, compound 19a (IC50 = 0.039 μM) was identified as the most promising compound with substantially higher in vitro inhibitory potency than allopurinol (IC50 = 7.590 μM) and comparable to febuxostat (IC50 = 0.028 μM). The SAR analysis revealed that interrupting the IMHB through the removal of the amino group could damage the XO inhibitory potency; pyrimidine-4-carboxylic acid moiety was more beneficial for the XO inhibitory potency than the pyrimidine-5-carboxylic acid moiety. Additionally, enzyme kinetics studies suggested that compounds 11a, 15a and 19a acted as mixed-type inhibitors for XO and the removal of 6-position amino group resulted in a weakened affinity to the free enzyme, but an enhanced binding to the enzyme-substrate complex. Molecular modeling provided a reasonable explanation for the SARs observed in this study. Furthermore, in vivo hypouricemic effects demonstrated that compounds 15a and 19a could effectively reduce serum uric acid levels at an oral dose of 10 mg/kg, with 19a demonstrating a stronger effect than 15a. Therefore, our study proved that 6-(4-alkoxy-3-cyanophenyl)-1,2-dihydro-3H-pyrazolo[3,4-d]pyrimidin-3-ones were potent pyrimidine-based XO inhibitors and compound 19a required further structural optimization as a potential and efficacious agents for the treatment of hyperuricemia and gout.


Synthesis and biological effects of novel 2-amino-3-(4-chlorobenzoyl)-4-substituted thiophenes as allosteric enhancers of the A1 adenosine receptor.

  • Romeo Romagnoli‎ et al.
  • European journal of medicinal chemistry‎
  • 2013‎

Allosteric enhancers for the A1 adenosine receptor represent a novel and unique drug design strategy to augment the response to endogenous adenosine in a site- and event-specific manner. We have previously investigated a detailed structure-activity relationship study around a wide series of 2-amino-3-aroyl-4-[(4-arylpiperazin-1-yl)methyl]thiophene derivatives as potent allosteric enhancers of the A1 adenosine receptor. In this manuscript we report our investigation on the influence on allosteric enhancer activity of further substitution at the 4-position of the 2-amino-3-(4-chlorobenzoyl)-thiophene system to explore bulk tolerance by replacement of the arylpiperazine moiety with a series of fused indole nuclei corresponding to 1,2,3,4-tetrahydropyrazino[1,2-a]indole, 1,2,3,4,10,10a-hexahydropyrazino[1,2-a]indole, tetrahydro-γ-carboline, tetrahydroisoquinoline, spiro-1,3-benzodioxolepiperidine, aliphatic tertiary amine, N-alkylaniline, aryl ether and aryl thioether templates. The 1,2,3,4-tetrahydropyrazino[1,2-a]indole derivatives 3a-c and 3e were the most active compounds in binding (saturation and competition) and functional cAMP studies, being able to potentiate agonist [(3)H]CCPA binding to the A1 receptor. This study also shows that it is possible to obtain a good separation between allosteric enhancement and antagonistic activity at the A1 adenosine receptor.


Structure-activity relationships in fungal nucleobases transporters as dissected by the inhibitory effects of novel purine analogues.

  • Efthymios-Spyridon Gavriil‎ et al.
  • European journal of medicinal chemistry‎
  • 2018‎

We have previously rationally designed, synthesized and tested a number of 3-deazapurine analogues, which inhibit the ubiquitous fungal nucleobase transporter FcyB, through binding in its major substrate binding site, by specifically interacting with Asn163. Here, in an effort to further understand the molecular details of structure-activity relationships in all three major nucleobase transporters of fungi, we extend this study by designing, based on our previous experience, synthesizing and testing further 3-deazapurine analogues. We thus identify seven new compounds with relatively high affinity (19-106 μΜ) for the FcyB binding site. Importantly, four of these compounds can also efficiently inhibit AzgA, a structurally and evolutionary distinct, but functionally similar, purine transporter. Contrastingly, none of the new compounds tested had any effect on the transport activity of the uric acid-xanthine transporter UapA, albeit this being a structural homologue of AzgA. Besides the apparent importance for understanding how nucleobase transporter specificity is determined at the molecular level, our work might constitute a critical step in the design of novel purine-related antifungals.


Nucleotide analogues containing a pyrrolidine, piperidine or piperazine ring: Synthesis and evaluation of inhibition of plasmodial and human 6-oxopurine phosphoribosyltransferases and in vitro antimalarial activity.

  • Jan Frydrych‎ et al.
  • European journal of medicinal chemistry‎
  • 2021‎

Parasites of the Plasmodium genus are unable to produce purine nucleotides de novo and depend completely on the salvage pathway. This fact makes plasmodial hypoxanthine-guanine-(xanthine) phosphoribosyltransferase [HG(X)PRT] a valuable target for development of antimalarial agents. A series of nucleotide analogues was designed, synthesized and evaluated as potential inhibitors of Plasmodium falciparum HGXPRT, P. vivax HGPRT and human HGPRT. These novel nucleoside phosphonates have a pyrrolidine, piperidine or piperazine ring incorporated into the linker connecting the purine base to a phosphonate group(s) and exhibited a broad range of Ki values between 0.15 and 72 μM. The corresponding phosphoramidate prodrugs, able to cross cell membranes, have been synthesized and evaluated in a P. falciparum infected human erythrocyte assay. Of the eight prodrugs evaluated seven exhibited in vitro antimalarial activity with IC50 values within the range of 2.5-12.1 μM. The bis-phosphoramidate prodrug 13a with a mean (SD) IC50 of 2.5 ± 0.7 μM against the chloroquine-resistant P. falciparum W2 strain exhibited low cytotoxicity in the human hepatocellular liver carcinoma (HepG2) and normal human dermal fibroblasts (NHDF) cell lines at a concentration of 100 μM suggesting good selectivity for further structure-activity relationship investigations.


Sulfide, sulfoxide and sulfone bridged acyclic nucleoside phosphonates as inhibitors of the Plasmodium falciparum and human 6-oxopurine phosphoribosyltransferases: Synthesis and evaluation.

  • Tomáš Klejch‎ et al.
  • European journal of medicinal chemistry‎
  • 2019‎

Hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) is a recognized target for antimalarial chemotherapeutics. It synthesises all of the 6-oxopurine nucleoside monophosphates, IMP, GMP and XMP needed by the malarial parasite, Plasmodium falciparum (Pf). PfHGXPRT is also indirectly responsible for the synthesis of the adenosine monophosphate, AMP. The acyclic nucleoside phosphonates (ANPs) are a class of PfHGXPRT inhibitors. Prodrugs of these compounds are able to arrest the growth of Pf in cell culture. In the search for new inhibitors of PfHGXPRT, a series of sulfur containing ANPs (thia-ANPs) has been designed and synthesized. These compounds are based on the structure of 2-(phosphonoethoxy)ethylguanine (PEEG) and PEEHx which consist of a purine base (i.e. guanine or hypoxanthine) linked to a phosphonate group by five atoms i.e. four carbons and one oxygen. Here, PEEG and PEEHx were modified by substituting a sulfide, sulfoxide or a sulfone bridge for the oxygen atom in the linker. The effect of these substitutions on the Ki values for human HGPRT and PfHGXPRT was investigated and showed that most of the thia-ANPs distinctively favour PfHGXPRT. For example, the thia-analogue of PEEHx has a Ki value of 0.2 μM for PfHGXPRT, a value 25-fold lower than for the human counterpart. Prodrugs of these compounds have IC50 values in the 4-6 μM range in antimalarial cell-based assays, making them attractive compounds for further development as antimalarial drug leads.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: