Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Plasma Xanthine Oxidoreductase (XOR) Activity in Cardiovascular Disease Outpatients.

  • Masato Matsushita‎ et al.
  • Circulation reports‎
  • 2020‎

Background: The mechanisms of the increased plasma xanthine oxidoreductase (XOR) activity in outpatients with cardiovascular disease were unclear. Methods and Results: A total of 372 outpatients were screened, and 301 outpatients with cardiovascular disease were prospectively analyzed. Blood samples were collected from patients who visited a daily cardiovascular outpatient clinic. Patients with diabetes mellitus (DM) were significantly more likely to be classified into the high-XOR group (≥100 pg/h/mL; 50%) than the low-XOR group (<100 pmol/h/mL; 28.7%). On multivariate logistic regression analysis, DM (OR, 2.683; 95% CI: 1.441-4.996) was independently associated with high plasma XOR activity in all cohorts. In the diabetic cardiovascular disease patients (n=100), median body mass index (BMI) in the high-XOR group (28.0 kg/m2; IQR, 25.2-29.4 kg/m2, n=32) was significantly higher than in the low-XOR group (23.6 kg/m2; IQR, 21.2-25.7 kg/m2, n=68), and BMI was independently associated with high plasma XOR activity (OR, 1.340; 95% CI: 1.149-1.540). Plasma hydrogen peroxide was significantly higher in DM patients with high plasma XOR activity and obesity (>22 kg/m2) than in other patients. Conclusions: DM with obesity is one of the mechanisms of XOR enhancement in cardiovascular disease. The increase of XOR is a possible pathway for the production of reactive oxygen species in obese cardiovascular disease patients with DM.


Habitual exercise decreases plasma xanthine oxidoreductase activity in middle-aged and older women.

  • Keisei Kosaki‎ et al.
  • Journal of clinical biochemistry and nutrition‎
  • 2018‎

The aim of present study was to investigate the association between plasma xanthine oxidoreductase activity, which has gained attention as a novel preventive target of cardiovascular disease, and various physiological parameters and was to determine the effects of habitual exercise on plasma xanthine oxidoreductase activity in middle-aged and older women. In the cross-sectional study, we investigated the association between plasma xanthine oxidoreductase activity and various physiological parameters in 94 middle-aged and older women. In the interventional study, subjects (n = 22) were divided into two groups: exercise (n = 12) or the control group (n = 10), whereby we examined the effect of 12-week aerobic exercise training on plasma xanthine oxidoreductase activity in middle-aged and older women. The cross-sectional study demonstrated that plasma xanthine oxidoreductase activity was significantly associated with various physiological parameters, including visceral fat and daily step counts. In the interventional study, the plasma xanthine oxidoreductase activity significantly decreased after the 12-week aerobic exercise training, its changes were inversely associated with the changes in daily step counts. Our results revealed that the plasma xanthine oxidoreductase activity was associated with visceral fat accumulation and lack of exercise, and it was decreased by the aerobic exercise training.


Tissue xanthine oxidoreductase activity in a mouse model of aristolochic acid nephropathy.

  • Takeo Ishii‎ et al.
  • FEBS open bio‎
  • 2021‎

Xanthine oxidoreductase (XOR) is a critical enzyme in purine metabolism and uric acid production, and its levels are reported to increase during stress, thereby promoting organ damage. Herein, we investigated the activity of XOR in a mouse model of aristolochic acid I (AA)-induced nephropathy, a type of nephrotoxic chronic kidney disease (CKD). A persistent decrease in renal function was observed in mice up to 4 weeks after 4 weeks of AA (2.5 mg kg-1 ) administration. Renal histology revealed an increase in tubular interstitial fibrosis over time. Although AA administration did not change XOR activity in the plasma, heart, liver, or muscle, XOR activity was persistently increased in renal tissue. Our results suggest that the renal tissue-specific increase in XOR activity is involved in the progression of tubulo-interstitial disorders, specifically fibrosis.


Relationship between Xanthine Oxidoreductase Redox and Oxidative Stress among Chronic Kidney Disease Patients.

  • Hiroyuki Terawaki‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2018‎

Xanthine oxidase (XO), an isoform of xanthine oxidoreductase (XOR), is thought to increase the cardiovascular burden among chronic kidney disease (CKD) patients via oxidative radical production. Plasma XOR redox, which is characterized by the ratio of XO to total XOR, changes under different oxidative conditions associated with kidney dysfunction. However, the relationship between plasma XOR redox and oxidative stress (OS) is unclear. Thus, we aimed to clarify whether OS is related to XOR redox. We used the redox state of human serum albumin (HSA) as a marker to investigate the status of OS in CKD patients. HSA is composed of human mercaptoalbumin (HMA), which possesses not oxidized cysteine residues, reversibly oxidized human nonmercaptoalbumin-1 (HNA-1), and strongly oxidized human nonmercaptoalbumin-2 (HNA-2). The subjects included 13 nondialysis patients (7 males and 6 females) with varying degrees of kidney function. We found that ƒ(HMA) was negatively (R = -0.692, P = 0.0071) and ƒ(HNA-1) was positively (R = 0.703, P = 0.0058) correlated with plasma XO/XOR. ƒ(HNA-2) showed no correlation with XO/XOR (R = 0.146, P = 0.6412), indicating that plasma XOR redox is not related to the irreversible oxidation of HSA. In conclusion, plasma XOR redox is closely related to HSA redox, particularly reversible oxidation of HSA.


Xanthine oxidoreductase activity is associated with serum uric acid and glycemic control in hemodialysis patients.

  • Ayumi Nakatani‎ et al.
  • Scientific reports‎
  • 2017‎

Xanthine oxidoreductase activity (XOR-a) plays an important role as a pivotal source of reactive oxygen species. In the present study, we investigated factors associated with plasma XOR-a in 163 hemodialysis patients (age 67.3 ± 10.9 years; 89 males and 74 females), using a newly established, highly-sensitive assay based on [13C2,15N2] xanthine and liquid chromatography/triple quadrupole mass spectrometry. Plasma glucose and serum uric acid levels correlated significantly and positively with plasma XOR-a. In multiple regression analyses, the presence of type 2 diabetes mellitus (T2DM) and plasma glucose were associated significantly, independently, and positively with plasma XOR-a. While serum uric acid correlated significantly and positively with plasma XOR-a in hemodialysis patients without T2DM, plasma glucose and serum glycated albumin, a new marker of glycemic control in diabetic hemodialysis patients, correlated significantly and positively with plasma XOR-a in those with T2DM. Multivariate analyses in those with T2DM revealed that plasma glucose and serum glycated albumin were associated significantly and independently with plasma XOR-a, and that serum uric acid was associated significantly and independently with XOR-a in those without T2DM. Our results suggested that glycemic control in hemodialysis patients may be important in regard to a decrease in ROS induced by XOR.


Renoprotective effect of the xanthine oxidoreductase inhibitor Topiroxostat under decreased angiotensin II type 1a receptor expression.

  • Keiichi Ohata‎ et al.
  • European journal of pharmacology‎
  • 2017‎

The aim of this study was to confirm the renoprotective effect of xanthine oxidoreductase (XOR) inhibitor, topiroxostat, compared with another XOR inhibitor, febuxostat, under decreased angiotensin II type 1a (AT1a) receptor expression in the model of renal injury caused by adenine. To evaluate the degree of tubular damage using urinary liver-type fatty acid-binding protein (L-FABP) under decreased AT1a expression, we used AT1a receptor knockdown hetero and human L-FABP chromosomal transgenic (Tg) mice (AT1a+/-L-FABP+/-). Male AT1a+/-L-FABP+/- mice were divided into two groups: the adenine diet group (n = 40) was given a diet containing only 0.2% w/w adenine, and the normal diet group (n = 5) was given a normal diet. When renal dysfunction was confirmed in the adenine diet group 4 weeks after starting the diet, the adenine diet group was further divided into five groups. The adenine diet group (n = 8) was continuously given only the adenine diet. Each group receiving high-dose (3mg/kg) or low-dose (1mg/kg) topiroxostat (Topiroxostat-H group, n = 8, Topiroxostat-L group, n = 8) or febuxostat (Febuxostat-H group, n = 8, Febuxostat-L group, n = 8) was given the adenine diet including the drug for another 4 weeks. The levels of renal XOR, renal dysfunction, urinary L-FABP, tubulointerstitial damage, hypoxia, and oxidative stress were decreased or attenuated after treatment with topiroxostat or febuxostat compared with the adenine diet group. Furthermore, antioxidant capacity was maintained owing to these treatments. In conclusion, topiroxostat and febuxostat attenuated renal damage under decreased AT1a expression in the adenine-induced renal injury model.


Association of the plasma xanthine oxidoreductase activity with the metabolic parameters and vascular complications in patients with type 2 diabetes.

  • Tomoko Okuyama‎ et al.
  • Scientific reports‎
  • 2021‎

Xanthine oxidoreductase (XOR) catalyzes the oxidation of hypoxanthine to xanthine, and of xanthine to uric acid. XOR also enhances the production of reactive oxygen species and causes endothelial dysfunction. In this study, we evaluated the association of XOR and its substrate with the vascular complications in 94 Japanese inpatients with type 2 diabetes (T2DM). The plasma XOR activity and plasma xanthine levels were positively correlated with the body mass index, aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-GTP, fasting plasma insulin, and the homeostasis model of assessment of insulin resistance (HOMA-IR), and negatively correlated with the high density lipoprotein cholesterol. The plasma XOR activity also showed a positive correlation with the serum triglyceride. Multivariate analyses identified AST, ALT, fasting plasma insulin and HOMA-IR as being independently associated with the plasma XOR activity. The plasma XOR activity negatively correlated with the duration of diabetes, and positively correlated with the coefficient of variation of the R-R interval and sensory nerve conduction velocity. Furthermore, the plasma XOR activity was significantly decreased in patients with coronary artery disease. Thus, the plasma XOR activity might be a surrogate marker for the development of vascular complications, as well as liver dysfunction and insulin resistance, in T2DM.Trial registration: This study is registered at the UMIN Clinical Trials Registry (UMIN000029970; https://www.umin.ac.jp/ctr/index-j.htm ). The study was conducted from Nov 15, 2017.


Xanthine oxidoreductase-mediated injury is amplified by upregulated AMP deaminase in type 2 diabetic rat hearts under the condition of pressure overload.

  • Yusuke Igaki‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2021‎

We previously reported that upregulated AMP deaminase (AMPD) contributes to diastolic ventricular dysfunction via depletion of the adenine nucleotide pool in a rat model of type 2 diabetes (T2DM), Otsuka Long-Evans-Tokushima Fatty rats (OLETF). Meanwhile, AMPD promotes the formation of substrates of xanthine oxidoreductase (XOR), which produces ROS as a byproduct. Here, we tested the hypothesis that a functional link between upregulated AMPD and XOR is involved in ventricular dysfunction in T2DM rats.


Association between plasma xanthine oxidoreductase activity and in-hospital outcomes in patients with stable coronary artery disease after percutaneous coronary intervention.

  • Ryota Sato‎ et al.
  • PloS one‎
  • 2021‎

Reactive oxygen species generated by xanthine oxidoreductase (XOR) are associated with the progression of atherosclerosis. However, changes in plasma XOR (pXOR) activity after percutaneous coronary intervention (PCI) for stable coronary artery disease (CAD) remains unknown.


Increased plasma XOR activity induced by NAFLD/NASH and its possible involvement in vascular neointimal proliferation.

  • Yusuke Kawachi‎ et al.
  • JCI insight‎
  • 2021‎

Xanthine oxidoreductase (XOR) is an enzyme that catalyzes hypoxanthine to xanthine and xanthine to uric acid, respectively. However, the underlying mechanisms of increased plasma XOR and its pathological roles in systemic diseases, such as atherosclerosis, are not fully understood. In this study, we found that changes in plasma XOR activity after bariatric surgery closely associated with those in liver enzymes, but not with those in BMI. In a mouse model of nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH), plasma XOR activity markedly increased. Besides, purine catabolism was accelerated in the plasma per se of NASH mice and human patients with high XOR activity. In our NASH mice, we observed an increased vascular neointima formation consisting of dedifferentiated vascular smooth muscle cells (SMCs), which was significantly attenuated by topiroxostat, a selective XOR inhibitor. In vitro, human liver S9-derived XOR promoted proliferation of SMCs with phenotypic modulation and induced ROS production by catabolizing hypoxanthine released from human endothelial cells. Collectively, the results from human and mouse models suggest that increased plasma XOR activity, mainly explained by excess hepatic leakage, was involved in the pathogenesis of vascular injury, especially in NAFLD/NASH conditions.


Organogermanium suppresses cell death due to oxidative stress in normal human dermal fibroblasts.

  • Tomoya Takeda‎ et al.
  • Scientific reports‎
  • 2019‎

Reactive oxygen species (ROS) are very harmful to dermal cells, and it is thus important to develop cosmetics that protect the skin from ROS and other stimuli. Repagermanium is a synthetic water-soluble organogermanium polymer, and in this study, we attempted to visualize the incorporation of germanium into normal human dermal fibroblasts (NHDFs) using isotope microscopy. In addition, the content of 3-(trihydroxygermyl)propanoic acid (THGP), a hydrolyzed monomer of repagermanium, in NHDFs was determined through liquid chromatography mass spectrometry (LC-MS/MS), and the dose-dependent incorporation of THGP was confirmed. We then evaluated the preventive effects of THGP against ROS-induced NHDF death and confirmed the observed preventive effects through gene profiling and expression analysis. The addition of 0.59-5.9 mM THGP reduced cell death resulting from ROS damage caused by the reaction between xanthine oxidase and hypoxanthine and the direct addition of H2O2. Furthermore, this study provides the first demonstration that the effect of THGP was not due to the direct scavenging of ROS, which indicates that the mechanism of THGP differs from that of general antioxidants, such as ascorbic acid. The gene profiling and expression analysis showed that THGP suppressed the expression of the nuclear receptor subfamily 4 group A member 2 (NR4A2) gene, which is related to cell death, and the interleukin 6 (IL6) and chemokine (C-X-C motif) ligand 2 (CXCL2) genes, which are related to the inflammatory response. Furthermore, the production of IL6 induced by H2O2 was suppressed by the THGP treatment. Our data suggest that the preventive effect of THGP against ROS-induced cell death is not due to antioxidant enzymes or ROS scavenging.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: