Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 18 papers out of 18 papers

Euodia daniellii Hemsl. Extract and Its Active Component Hesperidin Accelerate Cutaneous Wound Healing via Activation of Wnt/β-Catenin Signaling Pathway.

  • Minguen Yoon‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

The activation of the Wnt/β-catenin signaling pathway plays a key role in the wound-healing process through tissue regeneration. The extract of Euodia daniellii Hemsl. (E. daniellii), a member of the Rutaceae family, activates the Wnt/β-catenin signaling pathway. However, the function of E. daniellii in wound healing has not yet been elucidated. We performed a migration assay to determine the wound-healing effect of E. daniellii extract in vitro using human keratinocytes and dermal fibroblast. In addition, a mouse acute wound model was used to investigate the cutaneous wound-healing effect of E. daniellii extract in vivo and confirm the potential mechanism. E. daniellii extract enhanced the migration of human keratinocytes and dermal fibroblasts via the activation of the Wnt/β-catenin pathway. Moreover, the E. daniellii extract increased the levels of keratin 14, PCNA, collagen I, and α-SMA, with nuclei accumulation of β-catenin in vitro. E. daniellii extract also efficiently accelerated re-epithelialization and stimulated wound healing in vivo. Furthermore, we confirmed that hesperidin, one of the components of E. daniellii, efficiently accelerated the migration of human keratinocytes and dermal fibroblasts, as well as wound healing in vivo via the activation of the Wnt/β-catenin pathway. Overall, E. daniellii extract and its active component, hesperidin, have potential to be used as therapeutic agents for wound healing.


5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation.

  • Yong-Hee Cho‎ et al.
  • Nature communications‎
  • 2020‎

5-Fluorouracil (5-FU) remains the first-line treatment for colorectal cancer (CRC). Although 5-FU initially de-bulks the tumor mass, recurrence after chemotherapy is the barrier to effective clinical outcomes for CRC patients. Here, we demonstrate that p53 promotes WNT3 transcription, leading to activation of the WNT/β-catenin pathway in ApcMin/+/Lgr5EGFP mice, CRC patient-derived tumor organoids (PDTOs) and patient-derived tumor cells (PDCs). Through this regulation, 5-FU induces activation and enrichment of cancer stem cells (CSCs) in the residual tumors, contributing to recurrence after treatment. Combinatorial treatment of a WNT inhibitor and 5-FU effectively suppresses the CSCs and reduces tumor regrowth after discontinuation of treatment. These findings indicate p53 as a critical mediator of 5-FU-induced CSC activation via the WNT/β-catenin signaling pathway and highlight the significance of combinatorial treatment of WNT inhibitor and 5-FU as a compelling therapeutic strategy to improve the poor outcomes of current 5-FU-based therapies for CRC patients.


Indirubin-3'-oxime stimulates chondrocyte maturation and longitudinal bone growth via activation of the Wnt/β-catenin pathway.

  • Sehee Choi‎ et al.
  • Experimental & molecular medicine‎
  • 2019‎

Researchers have shown increased interest in determining what stimulates height. Currently, many children undergo precocious puberty, resulting in short stature due to premature closure of the growth plate. However, the current approach for height enhancement is limited to growth hormone treatment, which often results in side effects and clinical failure and is costly. Although recent studies have indicated the importance of paracrine signals in the growth plate for longitudinal bone growth, height-stimulating agents targeting the signaling pathways involved in growth plate maturation remain unavailable in the clinic. The Wnt/β-catenin pathway plays a major role in the maturation of growth plate chondrocytes. In this study, by using an ex vivo tibial culture system, we identified indirubin-3'-oxime (I3O) as a compound capable of enhancing longitudinal bone growth. I3O promoted chondrocyte proliferation and differentiation via activation of the Wnt/β-catenin pathway in vitro. Intraperitoneal injection of I3O in adolescent mice increased growth plate height along with incremental chondrocyte maturation. I3O promoted tibial growth without significant adverse effects on bone thickness and articular cartilage. Therefore, I3O could be a potential therapeutic agent for increasing height in children with growth retardation.


KY1022, a small molecule destabilizing Ras via targeting the Wnt/β-catenin pathway, inhibits development of metastatic colorectal cancer.

  • Yong-Hee Cho‎ et al.
  • Oncotarget‎
  • 2016‎

APC (80-90%) and K-Ras (40-50%) mutations frequently occur in human colorectal cancer (CRC) and these mutations cooperatively accelerate tumorigenesis including metastasis. In addition, both β-catenin and Ras levels are highly increased in CRC, especially in metastatic CRC (mCRC). Therefore, targeting both the Wnt/β-catenin and Ras pathways could be an ideal therapeutic approach for treating mCRC patients. In this study, we characterized the roles of KY1022, a small molecule that destabilizes both β-catenin and Ras via targeting the Wnt/β-catenin pathway, in inhibiting the cellular events, including EMT, an initial process of metastasis, and apoptosis. As shown by in vitro and in vivo studies using APCMin/+/K-RasG12DLA2 mice, KY1022 effectively suppressed the development of mCRC at an early stage of tumorigenesis. A small molecular approach degrading both β-catenin and Ras via inhibition of the Wnt/β-catenin signaling would be an ideal strategy for treatment of mCRC.


Destabilization of β-catenin and RAS by targeting the Wnt/β-catenin pathway as a potential treatment for triple-negative breast cancer.

  • Won-Ji Ryu‎ et al.
  • Experimental & molecular medicine‎
  • 2020‎

Triple-negative breast cancer (TNBC) is a severe and heterogeneous disease that lacks an approved targeted therapy and has a poor clinical outcome to chemotherapy. Although the RAS-ERK signaling axis is rarely mutated in TNBC, ~50% of TNBCs show an increased copy number and overexpression of epidermal growth factor receptor (EGFR). However, EGFR-targeted therapies have offered no improvement in patient survival, underscoring the need to explore downstream targets, including RAS. We found that both β-catenin and RAS, as well as epidermal growth factor receptor (EGFR), are overexpressed and correlated with one another in tumor tissues of TNBC patients. KYA1797K, an Axin-binding small molecule reducing β-catenin and RAS expression via degradation and suppressing EGFR expression via transcriptional repression, inhibited the proliferation and the metastatic capability of stable cell lines as well as patient-derived cells (PDCs) established from TNBC patient tissues. KYA1797K also suppressed the stemness of 3D-cultured PDCs and xenografted tumors established by using residual tumors from TNBC patients and those established by the TNBC cell line. Targeting both the Wnt/β-catenin and RAS-ERK pathways via small molecules simultaneously reducing the levels of β-catenin, RAS, and EGFR could be a potential therapeutic approach for TNBC.


Targeting phospholipase D1 attenuates intestinal tumorigenesis by controlling β-catenin signaling in cancer-initiating cells.

  • Dong Woo Kang‎ et al.
  • The Journal of experimental medicine‎
  • 2015‎

Expression of the Wnt target gene phospholipase D1 (PLD1) is up-regulated in various carcinomas, including colorectal cancer (CRC). However, the mechanistic significance of its elevated expression in intestinal tumorigenesis remains unknown. In this study, we show that genetic and pharmacological targeting of PLD1 disrupts spontaneous and colitis-associated intestinal tumorigenesis in Apc(Min/+) and azoxymethane/dextran sodium sulfate mice models. Intestinal epithelial cell-specific PLD1 overexpression in Apc(Min/+) mice accelerated tumorigenesis with increased proliferation and nuclear β-catenin levels compared with Apc(Min/+) mice. Moreover, PLD1 inactivation suppressed the self-renewal capacity of colon cancer-initiating cells (CC-ICs) by decreasing expression of β-catenin via E2F1-induced microRNA (miR)-4496 up-regulation. Ultimately, low expression of PLD1 coupled with a low level of CC-IC markers was predictive of a good prognosis in CRC patients, suggesting in vivo relevance. Collectively, our data reveal that PLD1 has a crucial role in intestinal tumorigenesis via its modulation of the E2F1-miR-4496-β-catenin signaling pathway. Modulation of PLD1 expression and activity represents a promising therapeutic strategy for the treatment of intestinal tumorigenesis.


Identification of Ras-degrading small molecules that inhibit the transformation of colorectal cancer cells independent of β-catenin signaling.

  • Wookjin Shin‎ et al.
  • Experimental & molecular medicine‎
  • 2018‎

Although the development of drugs that control Ras is an emerging topic in cancer therapy, no clinically applicable drug is currently available. We have previously utilized knowledge of the Wnt/β-catenin signaling-dependent mechanism of Ras protein stability regulation to identify small molecules that inhibit the proliferation and transformation of various colorectal cancer (CRC) cells via degradation of both β-catenin and Ras. Due to the absence of Ras degradation in cells expressing a nondegradable mutant form of β-catenin and the need to determine an alternative mechanism of Ras degradation, we designed a cell-based system to screen compounds that degrade Ras independent of the Wnt/β-catenin signaling pathway. A cell-based high-content screening (HCS) system that monitors the levels of EGFP-K-RasG12V was established using HCT-116 cells harboring a nondegradable mutant CTNNB1 (ΔS45). Through HCS of a chemical library composed of 10,000 compounds and subsequent characterization of hits, we identified several compounds that degrade Ras without affecting the β-catenin levels. KY7749, one of the most effective compounds, inhibited the proliferation and transformation of CRC cells, especially KRAS-mutant cells that are resistant to the EGFR monoclonal antibody cetuximab. Small molecules that degrade Ras independent of β-catenin may able to be used in treatments for cancers caused by aberrant EGFR and Ras.


Blockade of CXXC5-dishevelled interaction inhibits adipogenic differentiation, obesity, and insulin resistance in mice.

  • Seol Hwa Seo‎ et al.
  • Scientific reports‎
  • 2022‎

Obesity has become a major risk factor for developing metabolic diseases, including insulin resistance, type 2 diabetes, and hypertension. Growing pieces of evidence indicate that the Wnt/β-catenin signaling pathway plays an important role in adipogenesis and obesity. Activation of the Wnt/β-catenin signaling pathway inhibits adipogenesis by suppressing the differentiation of committed preadipocytes into mature adipocytes. CXXC5 is highly induced with suppression of Wnt/β-catenin signaling in early adipogenic differentiation. In addition, silencing CXXC5 in vitro increased β-catenin and decremented the major adipogenic differentiation markers. KY19334, a small molecule that activates the Wnt/β-catenin pathway via inhibition of CXXC5- Dishevelled (Dvl) protein-protein interaction (PPI), suppressed adipogenic differentiation. Administration of KY19334 ameliorated obesity by 26 ± 1.3% and insulin resistance by 23.45 ± 7.09% and reduced adipocyte hypertrophy by 80.87 ± 5.30% in high-fat diet (HFD)-fed mice. In addition, KY19334 accelerated the browning of adipose tissue and promoted hepatic glucose homeostasis in HFD-fed mice. In conclusion, activation of the Wnt/β-catenin signaling by inhibiting the interaction of CXXC5 and Dvl by small molecule-mediated interference is a potential therapeutic approach for treating obesity and insulin resistance.


Inhibition of CXXC5 function reverses obesity-related metabolic diseases.

  • Seol Hwa Seo‎ et al.
  • Clinical and translational medicine‎
  • 2022‎

Metabolic diseases, including type 2 diabetes, have long been considered incurable, chronic conditions resulting from a variety of pathological conditions in obese patients. Growing evidence suggests the Wnt/β-catenin pathway is a major pathway in adipose tissue remodelling, pancreatic β-cell regeneration and energy expenditure through regulation of key metabolic target genes in various tissues. CXXC5-type zinc finger protein 5 (CXXC5) is identified negative feedback regulator of the Wnt/β-catenin pathway that functions via Dishevelled (Dvl) binding.


Inhibiting the cytosolic function of CXXC5 accelerates diabetic wound healing by enhancing angiogenesis and skin repair.

  • Eunhwan Kim‎ et al.
  • Experimental & molecular medicine‎
  • 2023‎

Diabetic wound healing, including diabetic foot ulcer (DFU), is a serious complication of diabetes. Considering the complexity of DFU development, the identification of a factor that mediates multiple pathogeneses is important for treatment. In this study, we found that CXXC-type zinc finger protein 5 (CXXC5), a negative regulator of the Wnt/β-catenin pathway, was overexpressed with suppression of the Wnt/β-catenin pathway and its target genes involved in wound healing and angiogenesis in the wound tissues of DFU patients and diabetes-induced model mice. KY19334, a small molecule that activates the Wnt/β-catenin pathway by inhibiting the CXXC5-Dvl interaction, accelerated wound healing in diabetic mice. The enhancement of diabetic wound healing could be achieved by restoring the suppressed Wnt/β-catenin signaling and subsequently inducing its target genes. Moreover, KY19334 induced angiogenesis in hindlimb ischemia model mice. Overall, these findings revealed that restorative activation of Wnt/β-catenin signaling by inhibiting the function of cytosolic CXXC5 could be a therapeutic approach for treating DFUs.


Metabolic improvement and liver regeneration by inhibiting CXXC5 function for non-alcoholic steatohepatitis treatment.

  • Seol Hwa Seo‎ et al.
  • Experimental & molecular medicine‎
  • 2022‎

Non-alcoholic steatohepatitis (NASH) is a chronic liver disease that results from multiple metabolic disorders. Considering the complexity of the pathogenesis, the identification of a factor mediating the multiple pathogenic phenotypes of NASH will be important for treatment. In this study, we found that CXXC5, a negative feedback regulator of the Wnt/β-catenin pathway, was overexpressed with suppression of Wnt/β-catenin signaling and its target genes involved in hepatic metabolism in obese-NASH patients. Cxxc5-/- mice were found to be resistant to NASH pathogenesis with metabolic improvements. KY19334, a small molecule that activates the Wnt/β-catenin pathway via interference of the CXXC5-Dvl interaction, reversed the overall pathogenic features of NASH as Cxxc5-/- mice. The improvement in NASH by KY19334 is attributed to its regenerative effects through restorative activation of the suppressed Wnt/β-catenin signaling. Overall, the pronounced metabolic improvements with the stimulation of liver regeneration by interfering with the CXXC5-Dvl interaction provide a therapeutic approach for NASH.


A Ras destabilizer KYA1797K overcomes the resistance of EGFR tyrosine kinase inhibitor in KRAS-mutated non-small cell lung cancer.

  • Jieun Park‎ et al.
  • Scientific reports‎
  • 2019‎

The epidermal growth factor receptor (EGFR) inhibitors such as erlotinib and gefitinib are widely used for treatment of non-small cell lung cancer (NSCLC), but they have shown limited efficacy in an unselected population of patients. The KRAS mutations, which are identified in approximately 20% of NSCLC patients, have shown to be associated with the resistance to the EGFR tyrosine kinase inhibitors (TKIs). Currently, there is no clinically available targeted therapy which can effectively inhibit NSCLC tumors harboring KRAS mutations. This study aims to show the effectiveness of KYA1797K, a small molecule which revealed anti-cancer effect in colorectal cancer by destabilizing Ras via inhibiting the Wnt/β-catenin pathway, for the treatment of KRAS-mutated NSCLC. While erlotinib fail to have anti-transforming effect in NSCLC cell lines harboring KRAS mutations, KYA1797K effectively inhibited the Ras-ERK pathway in KRAS-mutant NSCLC cell lines. As a result, KYA1797K treatment suppressed the growth and transformation of KRAS mutant NSCLC cells and also induced apoptosis. Furthermore, KYA1797K effectively inhibited Kras-driven tumorigenesis in the KrasLA2 mouse model by suppressing the Ras-ERK pathway. The destabilization of Ras via inhibition of the Wnt/β-catenin pathway is a potential therapeutic strategy for KRAS-mutated NSCLC that is resistant to EGFR TKI.


CXXC5 Mediates DHT-Induced Androgenetic Alopecia via PGD2.

  • Yeong Chan Ryu‎ et al.
  • Cells‎
  • 2023‎

The number of people suffering from hair loss is increasing, and hair loss occurs not only in older men but also in women and young people. Prostaglandin D2 (PGD2) is a well-known alopecia inducer. However, the mechanism by which PGD2 induces alopecia is poorly understood. In this study, we characterized CXXC5, a negative regulator of the Wnt/β-catenin pathway, as a mediator for hair loss by PGD2. The hair loss by PGD2 was restored by Cxxc5 knock-out or treatment of protein transduction domain-Dishevelled binding motif (PTD-DBM), a peptide activating the Wnt/β-catenin pathway via interference with the Dishevelled (Dvl) binding function of CXXC5. In addition, suppression of neogenic hair growth by PGD2 was also overcome by PTD-DBM treatment or Cxxc5 knock-out as shown by the wound-induced hair neogenesis (WIHN) model. Moreover, we found that CXXC5 also mediates DHT-induced hair loss via PGD2. DHT-induced hair loss was alleviated by inhibition of both GSK-3β and CXXC5 functions. Overall, CXXC5 mediates the hair loss by the DHT-PGD2 axis through suppression of Wnt/β-catenin signaling.


The Dishevelled-binding protein CXXC5 negatively regulates cutaneous wound healing.

  • Soung-Hoon Lee‎ et al.
  • The Journal of experimental medicine‎
  • 2015‎

Wnt/β-catenin signaling plays important roles in cutaneous wound healing and dermal fibrosis. However, its regulatory mechanism has not been fully elucidated, and a commercially available wound-healing agent targeting this pathway is desirable but currently unavailable. We found that CXXC-type zinc finger protein 5 (CXXC5) serves as a negative feedback regulator of the Wnt/β-catenin pathway by interacting with the Dishevelled (Dvl) protein. In humans, CXXC5 protein levels were reduced in epidermal keratinocytes and dermal fibroblasts of acute wounds. A differential regulation of β-catenin, α-smooth muscle actin (α-SMA), and collagen I by overexpression and silencing of CXXC5 in vitro indicated a critical role for this factor in myofibroblast differentiation and collagen production. In addition, CXXC5(-/-) mice exhibited accelerated cutaneous wound healing, as well as enhanced keratin 14 and collagen synthesis. Protein transduction domain (PTD)-Dvl-binding motif (DBM), a competitor peptide blocking CXXC5-Dvl interactions, disrupted this negative feedback loop and activated β-catenin and collagen production in vitro. Co-treatment of skin wounds with PTD-DBM and valproic acid (VPA), a glycogen synthase kinase 3β (GSK3β) inhibitor which activates the Wnt/β-catenin pathway, synergistically accelerated cutaneous wound healing in mice. Together, these data suggest that CXXC5 would represent a potential target for future therapies aimed at improving wound healing.


CXXC5 mediates growth plate senescence and is a target for enhancement of longitudinal bone growth.

  • Sehee Choi‎ et al.
  • Life science alliance‎
  • 2019‎

Longitudinal bone growth ceases with growth plate senescence during puberty. However, the molecular mechanisms of this phenomenon are largely unexplored. Here, we examined Wnt-responsive genes before and after growth plate senescence and found that CXXC finger protein 5 (CXXC5), a negative regulator of the Wnt/β-catenin pathway, was gradually elevated with reduction of Wnt/β-catenin signaling during senescent changes of rodent growth plate. Cxxc5 -/- mice demonstrated delayed growth plate senescence and tibial elongation. As CXXC5 functions by interacting with dishevelled (DVL), we sought to identify small molecules capable of disrupting this interaction. In vitro screening assay monitoring CXXC5-DVL interaction revealed that several indirubin analogs were effective antagonists of this interaction. A functionally improved indirubin derivative, KY19382, elongated tibial length through delayed senescence and further activation of the growth plate in adolescent mice. Collectively, our findings reveal an important role for CXXC5 as a suppressor of longitudinal bone growth involving growth plate activity.


Small molecule inhibitors of the Dishevelled-CXXC5 interaction are new drug candidates for bone anabolic osteoporosis therapy.

  • Hyun-Yi Kim‎ et al.
  • EMBO molecular medicine‎
  • 2016‎

Bone anabolic agents promoting bone formation and rebuilding damaged bones would ideally overcome the limitations of anti-resorptive therapy, the current standard prescription for osteoporosis. However, the currently prescribed parathyroid hormone (PTH)-based anabolic drugs present limitations and adverse effects including osteosarcoma during long-term use. Also, the antibody-based anabolic drugs that are currently being developed present the potential limits in clinical application typical of macromolecule drugs. We previously identified that CXXC5 is a negative feedback regulator of the Wnt/β-catenin pathway via its interaction with Dishevelled (Dvl) and suggested the Dvl-CXXC5 interaction as a potential target for anabolic therapy of osteoporosis. Here, we screened small-molecule inhibitors of the Dvl-CXXC5 interaction via a newly established in vitro assay system. The screened compounds were found to activate the Wnt/β-catenin pathway and enhance osteoblast differentiation in primary osteoblasts. The bone anabolic effects of the compounds were shown using ex vivo-cultured calvaria. Nuclear magnetic resonance (NMR) titration analysis confirmed interaction between Dvl PDZ domain and KY-02061, a representative of the screened compounds. Oral administration of KY-02327, one of 55 newly synthesized KY-02061 analogs, successfully rescued bone loss in the ovariectomized (OVX) mouse model. In conclusion, small-molecule inhibitors of the Dvl-CXXC5 interaction that block negative feedback regulation of Wnt/β-catenin signaling are potential candidates for the development of bone anabolic anti-osteoporosis drugs.


STAT3 Potentiates SIAH-1 Mediated Proteasomal Degradation of β-Catenin in Human Embryonic Kidney Cells.

  • Minkyung Shin‎ et al.
  • Molecules and cells‎
  • 2016‎

The β-catenin functions as an adhesion molecule and a component of the Wnt signaling pathway. In the absence of the Wnt ligand, β-catenin is constantly phosphorylated, which designates it for degradation by the APC complex. This process is one of the key regulatory mechanisms of β-catenin. The level of β-catenin is also controlled by the E3 ubiquitin protein ligase SIAH-1 via a phosphorylation-independent degradation pathway. Similar to β-catenin, STAT3 is responsible for various cellular processes, such as survival, proliferation, and differentiation. However, little is known about how these molecules work together to regulate diverse cellular processes. In this study, we investigated the regulatory relationship between STAT3 and β-catenin in HEK293T cells. To our knowledge, this is the first study to report that β-catenin-TCF-4 transcriptional activity was suppressed by phosphorylated STAT3; furthermore, STAT3 inactivation abolished this effect and elevated activated β-catenin levels. STAT3 also showed a strong interaction with SIAH-1, a regulator of active β-catenin via degradation, which stabilized SIAH-1 and increased its interaction with β-catenin. These results suggest that activated STAT3 regulates active β-catenin protein levels via stabilization of SIAH-1 and the subsequent ubiquitin-dependent proteasomal degradation of β-catenin in HEK293T cells.


A small molecule approach to degrade RAS with EGFR repression is a potential therapy for KRAS mutation-driven colorectal cancer resistance to cetuximab.

  • Sang-Kyu Lee‎ et al.
  • Experimental & molecular medicine‎
  • 2018‎

Drugs targeting the epidermal growth factor receptor (EGFR), such as cetuximab and panitumumab, have been prescribed for metastatic colorectal cancer (CRC), but patients harboring KRAS mutations are insensitive to them and do not have an alternative drug to overcome the problem. The levels of β-catenin, EGFR, and RAS, especially mutant KRAS, are increased in CRC patient tissues due to mutations of adenomatous polyposis coli (APC), which occur in 90% of human CRCs. The increases in these proteins by APC loss synergistically promote tumorigenesis. Therefore, we tested KYA1797K, a recently identified small molecule that degrades both β-catenin and Ras via GSK3β activation, and its capability to suppress the cetuximab resistance of KRAS-mutated CRC cells. KYA1797K suppressed the growth of tumor xenografts induced by CRC cells as well as tumor organoids derived from CRC patients having both APC and KRAS mutations. Lowering the levels of both β-catenin and RAS as well as EGFR via targeting the Wnt/β-catenin pathway is a therapeutic strategy for controlling CRC and other types of cancer with aberrantly activated the Wnt/β-catenin and EGFR-RAS pathways, including those with resistance to EGFR-targeting drugs attributed to KRAS mutations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: