2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

miR-423 rs6505162 C>A polymorphism contributes to decreased Wilms tumor risk.

  • Wen Fu‎ et al.
  • Journal of Cancer‎
  • 2018‎

Wilms tumor (WT) is the most prevalent urologic malignancy in childhood. Nonetheless, the genetic factors underlying WT remain largely unknown. The miR-423 rs6505162 C>A polymorphism is associated with the susceptibility to numerous cancers; however, no investigations have been conducted on its association with WT. To evaluate the correlation between the miR-423 rs6505162 C>A polymorphism and WT risk in Chinese children, we genotyped this polymorphism using the Taqman method in 145 cases and 531 cancer-free controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to estimate the strength of the association. The results showed that the rs6505162 CA genotype was associated with decreased susceptibility to WT (CA versus CC: adjusted OR=0.65, 95% CI=0.42-0.99, P=0.047). In the stratified analysis, we found that CA/AA genotypes conferred a significantly decreased overall risk of WT in children younger than 18 months (adjusted OR=0.30, 95% CI=0.14-0.63, P=0.002) and those with clinical stage I+II WT (adjusted OR=0.42, 95% CI=0.20-0.85, P=0.017) when compared with CC genotype. In summary, the miR-423 rs6505162 C>A polymorphism may negatively modify WT susceptibility in Chinese children. Our findings should be validated in larger studies involving other ethnicities.


The contribution of YTHDF2 gene rs3738067 A>G to the Wilms tumor susceptibility.

  • Zhiyuan Wang‎ et al.
  • Journal of Cancer‎
  • 2021‎

YTHDF2 is responsible for maintaining the dynamic N6-methyladenosine (m6A) modification balance and influences a variety of cancers. We tested whether YTHDF2 gene rs3738067 A>G polymorphism is related to Wilms tumor by genotyping samples of Chinese children (450 cases and 1317 controls). However, the rs3738067 A>G polymorphism showed no statistical significance with Wilms tumor susceptibility. Stratification analysis also revealed that there was no remarkable association of rs3738067 variant AG/GG genotype with Wilms tumor risk in every subgroup (age, gender, and clinical stages). In all, the results indicated YTHDF2 gene rs3738067 A>G polymorphism could not alter Wilms tumor risk significantly.


Senescence Process in Primary Wilms' Tumor Cell Culture Induced by p53 Independent p21 Expression.

  • Korkiat Theerakitthanakul‎ et al.
  • Journal of Cancer‎
  • 2016‎

Wilms tumor (WT) is an embryonal tumor occurring in developing kidney tissue. WT cells showing invasive cancer characteristics, also retain renal stem cell behaviours. In-vitro culture of WT is hampered by limited replicative potential. This study aimed to establish a longterm culture of WT cells to enable the study of molecular events to attempt to explain its cellular senescence.


Development and validation of a nomogram for predicting cancer-specific survival in patients with Wilms' tumor.

  • Zhenyu Pan‎ et al.
  • Journal of Cancer‎
  • 2019‎

Purpose: The objective of this study was to develop and validate a nomogram for predicting the cancer-specific survival (CSS) in patients with Wilms' tumor (WT). Methods: Patients with WT diagnosed between 2002 and 2015 in the Surveillance, Epidemiology, and End Results (SEER) database were divided randomly into training and validation cohorts in this study. Multivariate Cox regression analysis was used to screen variables. A Cox proportional-hazards regression model and a nomogram were constructed based on variables that significantly affected the CSS in the training cohort. The nomogram for distinguishing and predicting the CSS was evaluated using the concordance index (C-index), the area under the time-dependent receiver operating characteristic curve (AUC), and calibration plots. Results: In total, 1631 patients from the SEER database were enrolled, with 1141 categorized into the training cohort and 490 into the validation cohort. All significant variables associated with CSS-age, the number of examined lymph nodes, SEER stage, and tumor size-were included in the nomogram. The C-index values of the nomogram in the training and validation cohorts were 0.746 and 0.703, respectively. The 3-, 5-, and 10-year AUCs were 0.755, 0.749, and 0.724, respectively, in the training cohort, and 0.718, 0.707, and 0.718 in the validation cohort. The calibration plots indicated the nomogram could accurately predict the 3-, 5-, and 10-year CSS. Conclusions: We have developed and validated the first nomogram for predicting the survival of WT patients. The nomogram is a reliable tool for distinguishing and predicting the CSS in patients with WT. Information provided by the nomogram may help to improve the clinical practices related to WT.


Mir-454-3p induced WTX deficiency promotes hepatocellular carcinoma progressions through regulating TGF-β signaling pathway.

  • Hui Liu‎ et al.
  • Journal of Cancer‎
  • 2022‎

Background: Wilms tumor gene on X chromosome (WTX) is an X-linked tumor suppressor gene in Wilms tumor; however, however, the molecular mechanism of WTX in the occurrence and development of HCC has not been reported. Methods: The expression of miR-454-3p and WTX wre analyzed in 32 matched human HCC and normal tissue samples. The molecular mechanisms of miR-454-3p/WTX/TGFβ signaling in cell proliferation, migration, invasion and autophagy were investigated in vitro and in vivo. Results: WTX expression was downregulated in HCC tissues; lower WTX levels were associated with poor HCC patient outcomes. WTX loss triggers the activation of TGF-β signaling, which promotes HCC cells proliferation, migration, invasion and autophagy. Further mechanistic study showed that the aberrant upregulation of miR-454-3p was identified as the reason of WTX loss in HCC. Conclusions: WTX is a tumor suppressor gene in HCC, miR-454-3p/WTX/TGFβ signaling will provide a new direction for the diagnosis and treatment of HCC.


Biological Function of Ribosomal Protein L10 on Cell Behavior in Human Epithelial Ovarian Cancer.

  • Jimin Shi‎ et al.
  • Journal of Cancer‎
  • 2018‎

Ribosomal protein L10 (RPL10) is one of large ribosomal proteins and plays a role in Wilms' tumor and premature ovarian failure. However, the function of RPL10 in human epithelial ovarian cancer (EOC) remains unknown. The purpose of this study was to examine the expression level and function of RPL10 in EOC. RPL10 protein expression was detected by immunohistochemistry and Western blot. The association RPL10 expression with clinical features was analyzed. Loss-of-function and gain-of-function approaches were applied in cellular assays, including cell viability, migration, invasion, and apoptosis. Our study demonstrated for the first time that RPL10 was upregulated in human EOC compared with normal ovarian tissues. Knockdown of RPL10 inhibited cell viability, migration, and invasion, and increased cell apoptosis. On the contrary, upregulation of RPL10 increased cell viability, migration, invasion, and decreased cell apoptosis. Furthermore, miR-143-3p regulated RPL10 expression. Our data indicate that RPL10 is a potential tissue biomarker of patients with EOC and may be a therapeutic target of ovarian cancer.


α-1,2-Mannosidase MAN1C1 Inhibits Proliferation and Invasion of Clear Cell Renal Cell Carcinoma.

  • Haoming Li‎ et al.
  • Journal of Cancer‎
  • 2018‎

Background: This study investigated the biological function of the gene MAN1C1 α-mannosidase in renal cell carcinoma. It has been reported that MAN1C1 is probably a potential tumor suppressor gene in Wilms. However, the role of MAN1C1 in human clear cell renal cell carcinoma (ccRCC) has not been reported. Methods: In this study, MAN1C1 gene over-expression was used to transfect human renal cancer cell lines 786-O and OS-RC-2 to study apoptosis and the underlying mechanisms which influence epithelial-mesenchymal transition. Results: MAN1C1 was down-regulated in ccRCC and related to the clinicopathological factors and prognosis of ccRCC. We revealed that over-expression MAN1C1 showed anti-tumor effect by inducing apoptosis, as determined by Cell Counting Kit-8 (CCK-8) assay, cell cycle analysis, and western blot analysis. What's more, MAN1C1 over-expression remarkably increased the ratio of Bax/Bcl-2 and inhibited epithelial-mesenchymal transition by increasing the expression of E-CA. In addition, the ratio of Bax/Bcl-2 and E-CA were also increased in MAN1C1 gene over-expression renal cancer cells compared with the control cells. Conclusion: We find that re-expression of silenced MAN1C1 in ccRCC cell lines inhibited cell viability, colony formation, induced apoptosis, suppressed cell invasion and migration. In conclusion, MAN1C1 is a novel functional tumor suppressor in renal carcinogenesis. This is the first time that the function of MAN1C1 gene has been verified in the renal tumor tissue so far.


N6-methyladenosine RNA methylation regulators contribute to the progression of prostate cancer.

  • Qunying Wu‎ et al.
  • Journal of Cancer‎
  • 2021‎

Prostate cancer (PCa) is one of the most common epithelial malignant tumors and the fifth leading cause of cancer death in men. An increasing number of studies have demonstrated that N6-methyladenosine (m6A) plays a crucial role in tumorigenesis and tumor development. However, little is known about the role and levels of common m6A regulators and m6A levels in PCa. In this study, we analyzed the characteristic expression of m6A regulators in PCa and castration-resistant prostate cancer (CRPC). UALCAN and cBioPortal were used to estimate the clinical value and genetic alterations of m6A regulators, respectively. The correlation between m6A regulators and androgen receptor (AR) was assessed using Gene Expression Profiling Interactive Analysis (GEPIA) by Pearson correlation statistics. Total m6A levels were detected in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice and PCa cell lines. Results showed that the expression of methyltransferase-like 3 (METTL3) and YTH domain family members, namely, YTHDC2, YTHDF1, and YTHDF2 were generally upregulated in PCa, whereas those of fat mass and obesity-associated protein (FTO), AlkB homolog 5 (ALKBH5), and methyltransferase-like 14 (METTL14) were downregulated. The expression of METTL3, METTL14, Wilms' tumor 1-associating protein (WTAP), YTHDC2, YTHDF1, and YTHDF2 were remarkably higher in CRPC with lymph node metastasis than that in CRPC with bone metastasis, whereas ALKBH5, FTO, and YTHDF3 significantly decreased in CRPC with lymph node metastasis tissues. YTHDF1, YTHDF2, and YTHDC2 were positively correlated with the Gleason grades of PCa, and METTL14, FTO, and ALKBH5 were negatively associated with the Gleason classification. M6A regulators were positively correlated with AR. Patients with a genomic alteration of m6A were associated with poor disease-free survival (DFS). The total m6A levels in TRAMP mice increased dramatically compared with those in tumor-free mice, and m6A levels in LNCaP cell lines were higher than DU145 and PC3 cell lines. In summary, METTL3, METTL14, ALKBH5, FTO, YTHDC2, YTHDF1, and YTHDF2 were abnormally expressed in PCa and related to Gleason classification. Changes in m6A levels maybe contributed to the development and progression of PCa.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: