Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 29 papers

Impact of temporal fluctuations in optical defocus on visual acuity: Empirical results and modeling outcomes.

  • Sabyasachi Goswami‎ et al.
  • Journal of vision‎
  • 2023‎

Optical defocus in human eyes is seldom steady during naturalistic steady-state viewing. It fluctuates by 0.3 to 0.5 diopters (D) from accommodative microfluctuations and by 1.5 to 2.5 D in dysfunctions such as spasm of near reflex, both with ≤2 Hz low-pass frequency spectra. This study observed losses in monocular visual acuity of cyclopleged adults who encountered varying amplitude (0.25-2.0 D) and temporal frequency (0.25-2.0 Hz) combinations of sinusoidal defoci induced using an electrically tunable lens. Visual acuity, recorded for 300-ms flashes of Sloan optotype presentation using the method of constant stimuli, deteriorated with defocus amplitude at a rate steeper for lower than higher temporal frequencies. A template matching model of acuity, incorporating optical and neural low-pass filters, neural noise, and a cross-correlated decision operator, showed the best match with empirical data when acuity was governed by the minimum defocus available during optotype display. This criterion minimized acuity loss for higher temporal frequencies due to the increased probability of zero-defocus encounters within the presentation duration. Other decision criteria such as defocus averaging across the entire or parts of the presentation duration yielded less satisfactory results. These results imply that vision loss in humans encountering broadband time-varying defocus is dictated by the dominant low frequencies, with higher frequencies largely compensated using the least defocus decision strategy.


Cortical sources of Vernier acuity in the human visual system: An EEG-source imaging study.

  • Chuan Hou‎ et al.
  • Journal of vision‎
  • 2017‎

Vernier acuity determines the relative position of visual features with a precision better than the sampling resolution of cone receptors in the retina. Because Vernier displacement is thought to be mediated by orientation-tuned mechanisms, Vernier acuity is presumed to be processed in striate visual cortex (V1). However, there is considerable evidence suggesting that Vernier acuity is dependent not only on structures in V1 but also on processing in extrastriate cortical regions. Here we used functional magnetic resonance imaging-informed electroencephalogram source imaging to localize the cortical sources of Vernier acuity in observers with normal vision. We measured suprathreshold and near-threshold responses to Vernier onset/offset stimuli at different stages of the visual cortical hierarchy, including V1, hV4, lateral occipital cortex (LOC), and middle temporal cortex (hMT+). These responses were compared with responses to grating on/off stimuli, as well as to stimuli that control for lateral motion in the Vernier task. Our results show that all visual cortical regions of interest (ROIs) responded to both suprathreshold Vernier and grating stimuli. However, thresholds for Vernier displacement (Vernier acuity) were lowest in V1 and LOC compared with hV4 and hMT+, whereas all visual ROIs had identical thresholds for spatial frequency (grating acuity) and for relative motion. The cortical selectivity of sensitivity to Vernier displacement provides strong evidence that LOC, in addition to V1, is involved in Vernier acuity processing. The robust activation of LOC might be related to the sensitivity to the relative position of features, which is common to Vernier displacement and to some kinds of texture segmentation.


Weakened untuned gain control is associated with schizophrenia while atypical orientation-tuned suppression depends on visual acuity.

  • Victor J Pokorny‎ et al.
  • Journal of vision‎
  • 2023‎

Perceptual distortions are core features of psychosis. Weakened contrast surround suppression has been proposed as a neural mechanism underlying atypical perceptual experiences. Although previous work has measured suppression by asking participants to report the perceived contrast of a low-contrast target surrounded by a high-contrast surround, it is possible to modulate perceived contrast solely by manipulating the orientation of a matched-contrast center and surround. Removing the bottom-up segmentation cue of contrast difference and isolating orientation-dependent suppression may clarify the neural processes responsible for atypical surround suppression in psychosis. We examined surround suppression across a spectrum of psychotic psychopathology including people with schizophrenia (PSZ; N = 31) and people with bipolar disorder (PBD; N = 29), first-degree biological relatives of these patient groups (PBDrel, PSZrel; N = 28, N = 21, respectively), and healthy controls (N = 29). PSZ exhibited reduced surround suppression across orientations; although group differences were minimal at the condition that produced the strongest suppression. PBD and PSZrel exhibited intermediate suppression, whereas PBDrel performed most similarly to controls. Intriguingly, group differences in orientation-dependent surround suppression magnitude were moderated by visual acuity. A simulation in which visual acuity and/or focal attention interact with untuned gain control reproduces the observed pattern of results, including the lack of group differences when orientation of center and surround are the same. Our findings further elucidate perceptual mechanisms of impaired center-surround processing in psychosis and provide insights into the effects of visual acuity on orientation-dependent suppression in PSZ.


Temporal modulation improves dynamic peripheral acuity.

  • Jonathan A Patrick‎ et al.
  • Journal of vision‎
  • 2019‎

Macular degeneration and related visual disorders greatly limit foveal function, resulting in reliance on the peripheral retina for tasks requiring fine spatial vision. Here we investigate stimulus manipulations intended to maximize peripheral acuity for dynamic targets. Acuity was measured using a single interval orientation discrimination task at 10° eccentricity. Two types of image motion were investigated along with two different forms of temporal manipulation. Smooth object motion was generated by translating targets along an isoeccentric path at a constant speed (0-20°/s). Ocular motion was simulated by jittering target location using previously recorded fixational eye movement data, amplified by a variable gain factor (0-8). In one stimulus manipulation, the sequence was temporally subsampled by displaying the target on an evenly spaced subset of video frames. In the other, the contrast polarity of the stimulus was reversed at a variable rate. We found that threshold under object motion was improved at all speeds by reversing contrast polarity, while temporal subsampling improved resolution at high speeds but impaired performance at low speeds. With simulated ocular motion, thresholds were consistently improved by contrast polarity reversal, but impaired by temporal subsampling. We find that contrast polarity reversal and temporal subsampling produce differential effects on peripheral acuity. Applying contrast polarity reversal may offer a relatively simple image manipulation that could enhance visual performance in individuals with central vision loss.


Habitual higher order aberrations affect Landolt but not Vernier acuity.

  • Jenny L Reiniger‎ et al.
  • Journal of vision‎
  • 2019‎

To assess whether the eye's optical imperfections are relevant for hyperacute vision, we measured ocular wave aberrations, visual hyperacuity, and acuity thresholds in 31 eyes of young adults. Although there was a significant positive correlation between the subjects' performance in Vernier- and Landolt-optotype acuity tasks, we found clear differences in how far both acuity measures correlate with the eyes' optics. Landolt acuity thresholds were significantly better in eyes with low higher order aberrations and high visual Strehl ratios (r2 = 0.22, p = 0.009), and significantly positively correlated with axial length (r2 = 0.15, p = 0.03). A retinal image quality metric, calculated as two-dimensional correlation between perfect and actual retinal image, was also correlated with Landolt acuity thresholds (r2 = 0.27, p = 0.003). No such correlations were found with Vernier acuity performance (r2 < 0.03, p > 0.3). Based on these results, hyperacuity thresholds are, contrary to resolution acuity, not affected by higher order aberrations of the eye.


Motion adaptation improves acuity (but perceived size doesn't matter).

  • Selassie Tagoh‎ et al.
  • Journal of vision‎
  • 2022‎

Recognition acuity-the minimum size of a high-contrast object that allows us to recognize it-is limited by optical and neural elements of the eye and by processing within the visual cortex. The perceived size of objects can be changed by motion-adaptation. Viewing receding or looming motion makes subsequently viewed stimuli appear to grow or shrink, respectively. It has been reported that resulting changes in perceived size impact recognition acuity. We set out to determine if such acuity changes are reliable and what drives this phenomenon. We measured the effect of adaptation to receding and looming motion on acuity for crowded tumbling-T stimuli (). We quantified the role of crowding, individuals' susceptibility to motion-adaptation, and potentially confounding effects of pupil size and eye movements. Adaptation to receding motion made targets appear larger and improved acuity (-0.037 logMAR). Although adaptation to looming motion made targets appear smaller, it induced not the expected decrease in acuity but a modest acuity improvement (-0.018 logMAR). Further, each observer's magnitude of acuity change was not correlated with their individual perceived-size change following adaptation. Finally, we found no evidence that adaptation-induced acuity gains were related to crowding, fixation stability, or pupil size. Adaptation to motion modestly enhances visual acuity, but unintuitively, this is dissociated from perceived size. Ruling out fixation and pupillary behavior, we suggest that motion adaptation may improve acuity via incidental effects on sensitivity-akin to those arising from blur adaptation-which shift sensitivity to higher spatial frequency-tuned channels.


Effect of expansive optic flow and lateral motion parallax on depth estimation with normal and artificially reduced acuity.

  • Siyun Liu‎ et al.
  • Journal of vision‎
  • 2023‎

When an observer moves in space, the retinal projection of a stationary object either expands if the motion is toward the object or shifts horizontally if the motion contains a lateral component. This study examined the impact of expansive optic flow and lateral motion parallax on the accuracy of depth perception for observers with normal or artificially reduced acuity and asked whether any benefit is due to the continuous motion or to the discrete object image displacement. Stationary participants viewed a virtual room on a computer screen. They used an on-screen slider to estimate the depth of a target object relative to a reference object after seeing 2-second videos simulating five conditions: static viewing, expansive optic flow, and lateral motion parallax in either continuous motion or image displacement. Ten participants viewed the stimuli with normal acuity in Experiment 1 and 11 with three levels of artificially reduced acuity in Experiment 2. Linear regression models represented the relationship between the depth estimates of participants and the ground truth. Lateral motion parallax produced more accurate depth estimates than expansive optic flow and static viewing. Depth perception with continuous motion was more accurate than that with displacement under mild and moderate, but not severe, acuity reduction. For observers with both normal and artificially reduced acuity, lateral motion parallax was more helpful for object depth estimation than expansive optic flow, and continuous motion parallax was more helpful than object image displacement.


Motion-based super-resolution in the peripheral visual field.

  • Jonathan A Patrick‎ et al.
  • Journal of vision‎
  • 2017‎

Improvements in foveal acuity for moving targets have been interpreted as evidence for the ability of the visual system to combine information over space and time, in order to reconstruct the image at a higher resolution (super-resolution). Here, we directly test whether this occurs in the peripheral visual field and discuss its potential for improving functional capacity in ocular disease. The effect of motion on visual acuity was first compared under conditions in which performance was limited either by natural undersampling in the retinal periphery or by the presence of overlaid masks with opaque elements to simulate retinal loss. To equate the information content of moving and static sequences, we next manipulated the dynamic properties of the masks. Finally, we determined the dependence of motion-related improvements on the object of motion (target or mask) and its trajectory (smooth or jittered). Motion improved visual acuity for masked but not unmasked peripheral targets. Equating the information content of moving and static conditions removed some but not all of this benefit. Residual motion-related improvements were largest in conditions in which the target moved along a consistent and predictable path. Our results show that motion can improve peripheral acuity in situations in which performance is limited by abnormal undersampling. These findings are consistent with the operation of a super-resolution system and could have important implications for any pathology that alters the regular sampling properties of the retinal mosaic.


The visual benefits of correcting longitudinal and transverse chromatic aberration.

  • Austin Roorda‎ et al.
  • Journal of vision‎
  • 2023‎

We describe a system-the Binocular Varichrome and Accommodation Measurement System-that can be used to measure and correct the eye's longitudinal and transverse chromatic aberration (LCA and TCA) and to perform vision tests with custom corrections. We used the system to investigate how LCA and TCA affect visual performance. Specifically, we studied the effects of LCA and TCA on visual acuity, contrast sensitivity, and chromostereopsis. LCA exhibited inter subject variability but followed expected trends compared with previous reports. TCA at the fovea was variable between individuals but with a tendency for the shift at shorter wavelengths to be more temporalward in the visual field in each eye. We found that TCA was generally greater when LCA was corrected. For visual acuity, we found that a measurable benefit was realized only with both LCA and TCA correction unless the TCA was low. For contrast sensitivity, we found that the best sensitivity to a 10-cycle/degree polychromatic grating was attained when LCA and TCA were corrected. Finally, we found that the primary cause of chromostereopsis is the TCA of the eyes.


How do visual skills relate to action video game performance?

  • Aline F Cretenoud‎ et al.
  • Journal of vision‎
  • 2021‎

It has been claimed that video gamers possess increased perceptual and cognitive skills compared to non-video gamers. Here, we examined to which extent gaming performance in CS:GO (Counter-Strike: Global Offensive) correlates with visual performance. We tested 94 players ranging from beginners to experts with a battery of visual paradigms, such as visual acuity and contrast detection. In addition, we assessed performance in specific gaming skills, such as shooting and tracking, and administered personality traits. All measures together explained about 70% of the variance of the players' rank. In particular, regression models showed that a few visual abilities, such as visual acuity in the periphery and the susceptibility to the Honeycomb illusion, were strongly associated with the players' rank. Although the causality of the effect remains unknown, our results show that high-rank players perform better in certain visual skills compared to low-rank players.


Performance of complex visual tasks using simulated prosthetic vision via augmented-reality glasses.

  • Elton Ho‎ et al.
  • Journal of vision‎
  • 2019‎

Photovoltaic subretinal prosthesis is designed for restoration of central vision in patients with age-related macular degeneration (AMD). We investigated the utility of prosthetic central vision for complex visual tasks using augmented-reality (AR) glasses simulating reduced acuity, contrast, and visual field. AR glasses with blocked central 20° of visual field included an integrated video camera and software which adjusts the image quality according to three user-defined parameters: resolution, corresponding to the equivalent pixel size of an implant; field of view, corresponding to the implant size; and number of grayscale levels. The real-time processed video was streamed on a screen in front of the right eye. Nineteen healthy participants were recruited to complete visual tasks including vision charts, sentence reading, and face recognition. With vision charts, letter acuity exceeded the pixel-sampling limit by 0.2 logMAR. Reading speed decreased with increasing pixel size and with reduced field of view (7°-12°). In the face recognition task (four-way forced choice, 5° angular size) participants identified faces at >75% accuracy, even with 100 μm pixels and only two grayscale levels. With 60 μm pixels and eight grayscale levels, the accuracy exceeded 97%. Subjects with simulated prosthetic vision performed slightly better than the sampling limit on the letter acuity tasks, and were highly accurate at recognizing faces, even with 100 μm/pixel resolution. These results indicate feasibility of reading and face recognition using prosthetic central vision even with 100 μm pixels, and performance improves further with smaller pixels.


Individual differences in the perception of visual illusions are stable across eyes, time, and measurement methods.

  • Aline F Cretenoud‎ et al.
  • Journal of vision‎
  • 2021‎

Vision scientists have tried to classify illusions for more than a century. For example, some studies suggested that there is a unique common factor for all visual illusions. Other studies proposed that there are several subclasses of illusions, such as illusions of linear extent or distortions. We previously observed strong within-illusion correlations but only weak between-illusion correlations, arguing in favor of an even higher multifactorial space with-more or less-each illusion making up its own factor. These mixed results are surprising. Here, we examined to what extent individual differences in the perception of visual illusions are stable across eyes, time, and measurement methods. First, we did not find any significant differences in the magnitudes of the seven illusions tested with monocular or binocular viewing conditions. In addition, illusion magnitudes were not significantly predicted by visual acuity. Second, we observed stable individual differences over time. Last, we compared two illusion measurements, namely an adjustment procedure and a method of constant stimuli, which both led to similar individual differences. Hence, it is unlikely that the individual differences in the perception of visual illusions arise from instability across eyes, time, and measurement methods.


Combining optical and neural components in physiological visual image quality metrics as functions of luminance and age.

  • Gareth D Hastings‎ et al.
  • Journal of vision‎
  • 2020‎

Visual image quality metrics combine comprehensive descriptions of ocular optics (from wavefront error) with a measure of the neural processing of the visual system (neural contrast sensitivity). To improve the ability of these metrics to track real-world changes in visual performance and to investigate the roles and interactions of those optical and neural components in foveal visual image quality as functions of age and target luminance, models of neural contrast sensitivity were constructed from the literature as functions of (1) retinal illuminance (Trolands, td), and (2) retinal illuminance and age. These models were then incorporated into calculation of the visual Strehl ratio (VSX). Best-corrected VSX values were determined at physiological pupil sizes over target luminances of 104 to 10-3 cd/m2 for 146 eyes spanning six decades of age. Optical and neural components of the metrics interact and contribute to visual image quality in three ways. At target luminances resulting in >900 td at physiological pupil size, neural processing is constant, and only aberrations (that change as pupil size changes with luminance) affect the metric. At low mesopic luminances below where pupil size asymptotes to maximum, optics are constant (maximum pupil), and only the neural component changes with luminance. Between these two levels, both optical and neural components of the metrics are affected by changes in target luminance. The model that accounted for both retinal illuminance and age allowed VSX, termed VSX(td,a), to best track visual acuity trends (measured at 160 and 200 cd/m2) as a function of age (20s through 70s) from the literature. Best-corrected VSX(td,a) decreased by 2.24 log units between maximum and minimum target luminances in the youngest eyes and by 2.58 log units in the oldest. The decrease due to age was more gradual at high target luminances (0.70 log units) and more pronounced as target luminance decreased (1.04 log units).


Enhancing visual perceptual learning using transcranial electrical stimulation: Transcranial alternating current stimulation outperforms both transcranial direct current and random noise stimulation.

  • Qing He‎ et al.
  • Journal of vision‎
  • 2023‎

Diverse strategies can be employed to enhance visual skills, including visual perceptual learning (VPL) and transcranial electrical stimulation (tES). Combining VPL and tES is a popular method that holds promise for producing significant improvements in visual acuity within a short time frame. However, there is still a lack of comprehensive evaluation regarding the effects of combining different types of tES and VPL on enhancing visual function, especially with a larger sample size. In the present study, we recruited four groups of subjects (26 subjects each) to learn an orientation discrimination task with five daily training sessions. During training, the occipital region of each subject was stimulated by one type of tES-anodal transcranial direct current stimulation (tDCS), alternating current stimulation (tACS) at 10 Hz, high-frequency random noise stimulation (tRNS), and sham tACS-while the subject performed the training task. We found that, compared with the sham stimulation, both the high-frequency tRNS and the 10-Hz tACS facilitated VPL efficiently in terms of learning rate and performance improvement, but there was little modulatory effect in the anodal tDCS condition. Remarkably, the 10-Hz tACS condition exhibited superior modulatory effects compared with the tRNS condition, demonstrating the strongest modulation among the most commonly used tES types for further enhancing vision when combined with VPL. Our results suggest that alpha oscillations play a vital role in VPL. Our study provides a practical guide for vision rehabilitation.


Object crowding in age-related macular degeneration.

  • Julian M Wallace‎ et al.
  • Journal of vision‎
  • 2017‎

Crowding, the phenomenon of impeded object identification due to clutter, is believed to be a key limiting factor of form vision in the peripheral visual field. The present study provides a characterization of object crowding in age-related macular degeneration (AMD) measured at the participants' respective preferred retinal loci with binocular viewing. Crowding was also measured in young and age-matched controls at the same retinal locations, using a fixation-contingent display paradigm to allow unlimited stimulus duration. With objects, the critical spacing of crowding for AMD participants was not substantially different from controls. However, baseline contrast energy thresholds in the noncrowded condition were four times that of the controls. Crowding further exacerbated deficits in contrast sensitivity to three times the normal crowding-induced contrast energy threshold elevation. These findings indicate that contrast-sensitivity deficit is a major limiting factor of object recognition for individuals with AMD, in addition to crowding. Focusing on this more tractable deficit of AMD may lead to more effective remediation and technological assistance.


The relationship between retinal cone density and cortical magnification in human albinism.

  • Erica N Woertz‎ et al.
  • Journal of vision‎
  • 2020‎

The human fovea lies at the center of the retina and supports high-acuity vision. In normal visual system development, the highest acuity is correlated with both a high density of cone photoreceptors in the fovea and a magnified retinotopic representation of the fovea in the visual cortex. Both cone density and the cortical area dedicated to each degree of visual space-the latter describing cortical magnification (CM)-steadily decrease with increasing eccentricity from the fovea. In albinism, peak cone density at the fovea and visual acuity are decreased, but seem to be within normal limits in the periphery, thus providing a model to explore the correlation between retinal structure, cortical structure, and behavior. Here, we used adaptive optics scanning light ophthalmoscopy to assess retinal cone density and functional magnetic resonance imaging to measure CM in the primary visual cortex of normal controls and individuals with albinism. We find that retinotopic organization is more varied among individuals with albinism than previously appreciated. Additionally, CM outside the fovea is similar to that in controls, but also more variable. CM in albinism and controls exceeds that which might be predicted based on cone density alone, but is more accurately predicted by retinal ganglion cell density. This finding suggests that decreased foveal cone density in albinism may be partially counteracted by nonuniform connectivity between cones and their downstream signaling partners. Together, these results emphasize that central as well as retinal factors must be included to provide a complete picture of aberrant structure and function in albinism.


Matching convolved images to optically blurred images on the retina.

  • Sara Aissati‎ et al.
  • Journal of vision‎
  • 2022‎

Convolved images are often used to simulate the effect of ocular aberrations on image quality, where the retinal image is simulated by convolving the stimulus with the point spread function derived from the subject's aberrations. However, some studies have shown that convolved images are perceived far more degraded than the same image blurred with optical defocus. We hypothesized that the positive interactions between the monochromatic and chromatic aberrations in the eye are lost in the convolution process. To test this hypothesis, we evaluated optical and visual quality with natural optics and with convolved images (on-bench, computer simulations, and visual acuity [VA] in subjects) using a polychromatic adaptive optics system with monochromatic (555 nm) and polychromatic light (WL) illumination. The subject's aberrations were measured using a Hartmann Shack system and were used to convolve the visual stimuli, using Fourier optics. The convolved images were seen through corrected optics. VA with convolved stimuli was lower than VA through natural aberrations, particularly in WL (by 26% in WL). Our results suggest that the systematic decrease in visual performance with visual acuity and retinal image quality by simulation with convolved stimuli appears to be primarily associated with a lack of favorable interaction between chromatic and monochromatic aberrations in the eye.


The Bouma law accounts for crowding in 50 observers.

  • Jan W Kurzawski‎ et al.
  • Journal of vision‎
  • 2023‎

Crowding is the failure to recognize an object due to surrounding clutter. Our visual crowding survey measured 13 crowding distances (or "critical spacings") twice in each of 50 observers. The survey includes three eccentricities (0, 5, and 10 deg), four cardinal meridians, two orientations (radial and tangential), and two fonts (Sloan and Pelli). The survey also tested foveal acuity, twice. Remarkably, fitting a two-parameter model-the well-known Bouma law, where crowding distance grows linearly with eccentricity-explains 82% of the variance for all 13 × 50 measured log crowding distances, cross-validated. An enhanced Bouma law, with factors for meridian, crowding orientation, target kind, and observer, explains 94% of the variance, again cross-validated. These additional factors reveal several asymmetries, consistent with previous reports, which can be expressed as crowding-distance ratios: 0.62 horizontal:vertical, 0.79 lower:upper, 0.78 right:left, 0.55 tangential:radial, and 0.78 Sloan-font:Pelli-font. Across our observers, peripheral crowding is independent of foveal crowding and acuity. Evaluation of the Bouma factor, b (the slope of the Bouma law), as a biomarker of visual health would be easier if there were a way to compare results across crowding studies that use different methods. We define a standardized Bouma factor b' that corrects for differences from Bouma's 25 choice alternatives, 75% threshold criterion, and linearly symmetric flanker placement. For radial crowding on the right meridian, the standardized Bouma factor b' is 0.24 for this study, 0.35 for Bouma (1970), and 0.30 for the geometric mean across five representative modern studies, including this one, showing good agreement across labs, including Bouma's. Simulations, confirmed by data, show that peeking can skew estimates of crowding (e.g., greatly decreasing the mean or doubling the SD of log b). Using gaze tracking to prevent peeking, individual differences are robust, as evidenced by the much larger 0.08 SD of log b across observers than the mere 0.03 test-retest SD of log b measured in half an hour. The ease of measurement of crowding enhances its promise as a biomarker for dyslexia and visual health.


Benefits of retinal image motion at the limits of spatial vision.

  • Kavitha Ratnam‎ et al.
  • Journal of vision‎
  • 2017‎

Even during fixation, our eyes are constantly in motion, creating an ever-changing signal in each photoreceptor. Neuronal processes can exploit such transient signals to serve spatial vision, but it is not known how our finest visual acuity-one that we use for deciphering small letters or identifying distant faces and objects-is maintained when confronted with such change. We used an adaptive optics scanning laser ophthalmoscope to precisely control the spatiotemporal input on a photoreceptor scale in human observers during a visual discrimination task under conditions with habitual, cancelled or otherwise manipulated retinal image motion. We found that when stimuli moved, acuities were about 25% better than when no motion occurred, regardless of whether that motion was self-induced, a playback of similar motion, or an external simulation. We argue that in our particular experimental condition, the visual system is able to synthesize a higher resolution percept from multiple views of a poorly resolved image, a hypothesis that might extend the current understanding of how fixational eye motion serves high acuity vision.


Ocular accommodation and wavelength: The effect of longitudinal chromatic aberration on the stimulus-response curve.

  • Maydel Fernandez-Alonso‎ et al.
  • Journal of vision‎
  • 2024‎

The longitudinal chromatic aberration (LCA) of the eye creates a chromatic blur on the retina that is an important cue for accommodation. Although this mechanism can work optimally in broadband illuminants such as daylight, it is not clear how the system responds to the narrowband illuminants used by many modern displays. Here, we measured pupil and accommodative responses as well as visual acuity under narrowband light-emitting diode (LED) illuminants of different peak wavelengths. Observers were able to accommodate under narrowband light and compensate for the LCA of the eye, with no difference in the variability of the steady-state accommodation response between narrowband and broadband illuminants. Intriguingly, our subjects compensated more fully for LCA at nearer distances. That is, the difference in accommodation to different wavelengths became larger when the object was placed nearer the observer, causing the slope of the accommodation response curve to become shallower for shorter wavelengths and steeper for longer ones. Within the accommodative range of observers, accommodative errors were small and visual acuity normal. When comparing between illuminants, when accommodation was accurate, visual acuity was worst for blue narrowband light. This cannot be due to the sparser spacing for S-cones, as our stimuli had equal luminance and thus activated LM-cones roughly equally. It is likely because ocular LCA changes more rapidly at shorter wavelength and so the finite spectral bandwidth of LEDs corresponds to a greater dioptric range at shorter wavelengths. This effect disappears for larger accommodative errors, due to the increased depth of focus of the eye.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: