Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,010 papers

Characterizing the cellular attachment receptor for Langat virus.

  • Raquel Rodrigues‎ et al.
  • PloS one‎
  • 2019‎

Tick-borne encephalitis infections have increased the last 30 years. The mortality associated to this viral infection is 0.5 to 30% with a risk of permanent neurological sequelae, however, no therapeutic is currently available. The first steps of virus-cell interaction, such as attachment and entry, are of importance to understand pathogenesis and tropism. Several molecules have been shown to interact with tick-borne encephalitis virus (TBEV) at the plasma membrane surface, yet, no studies have proven that these are specific entry receptors. In this study, we set out to characterize the cellular attachment receptor(s) for TBEV using the naturally attenuated member of the TBEV complex, Langat virus (LGTV), as a model. Inhibiting or cleaving different molecules from the surface of A549 cells, combined with inhibition assays using peptide extracts from high LGTV binding cells, revealed that LGTV attachment to host cells is dependent on plasma membrane proteins, but not on glycans or glycolipids, and suggested that LGTV might use different cellular attachment factors on different cell types. Based on this, we developed a transcriptomic approach to generate a list of candidate attachment and entry receptors. Our findings shed light on the first step of the flavivirus life-cycle and provide candidate receptors that might serve as a starting point for future functional studies to identify the specific attachment and/or entry receptor for LGTV and TBEV.


Neutralizing antibodies against porcine epidemic diarrhea virus block virus attachment and internalization.

  • Lang Gong‎ et al.
  • Virology journal‎
  • 2018‎

Porcine epidemic diarrhea virus (PEDV) is emerging as a pathogenic coronavirus that causes a huge economic burden to the swine industry. Interaction of the viral spike (S) surface glycoprotein with the host cell receptor is recognized as the first step of infection and is the main determinant of virus tropism. The mechanisms by which neutralizing antibodies inhibit PEDV have not been defined. Isolating PEDV neutralizing antibodies are crucial to identifying the receptor-binding domains of the viral spike and elucidating the mechanism of protection against PEDV infection.


Proteoglycans act as cellular hepatitis delta virus attachment receptors.

  • Oscar Lamas Longarela‎ et al.
  • PloS one‎
  • 2013‎

The hepatitis delta virus (HDV) is a small, defective RNA virus that requires the presence of the hepatitis B virus (HBV) for its life cycle. Worldwide more than 15 million people are co-infected with HBV and HDV. Although much effort has been made, the early steps of the HBV/HDV entry process, including hepatocyte attachment and receptor interaction are still not fully understood. Numerous possible cellular HBV/HDV binding partners have been described over the last years; however, so far only heparan sulfate proteoglycans have been functionally confirmed as cell-associated HBV attachment factors. Recently, it has been suggested that ionotrophic purinergic receptors (P2XR) participate as receptors in HBV/HDV entry. Using the HBV/HDV susceptible HepaRG cell line and primary human hepatocytes (PHH), we here demonstrate that HDV entry into hepatocytes depends on the interaction with the glycosaminoglycan (GAG) side chains of cellular heparan sulfate proteoglycans. We furthermore provide evidence that P2XR are not involved in HBV/HDV entry and that effects observed with inhibitors for these receptors are a consequence of their negative charge. HDV infection was abrogated by soluble GAGs and other highly sulfated compounds. Enzymatic removal of defined carbohydrate structures from the cell surface using heparinase III or the obstruction of GAG synthesis by sodium chlorate inhibited HDV infection of HepaRG cells. Highly sulfated P2XR antagonists blocked HBV/HDV infection of HepaRG cells and PHH. In contrast, no effect on HBV/HDV infection was found when uncharged P2XR antagonists or agonists were applied. In summary, HDV infection, comparable to HBV infection, requires binding to the carbohydrate side chains of hepatocyte-associated heparan sulfate proteoglycans as attachment receptors, while P2XR are not actively involved.


Glycyrrhiza Polysaccharide Inhibits Pseudorabies Virus Infection by Interfering with Virus Attachment and Internalization.

  • Changchao Huan‎ et al.
  • Viruses‎
  • 2022‎

Pseudorabies virus (PRV) is one of the most important pathogens causing serious diseases and leads to huge economic losses in the global swine industry. With the continuous emergence of PRV variants and the increasing number of cases of human infection, there is an urgent need to develop antiviral drugs. In this study, we discover that Glycyrrhiza polysaccharide (GCP) has anti-PRV infection activity in vitro, and 600 μg/mL GCP can completely block viral infection. The addition of GCP simultaneously with or after PRV infection had a significant inhibitory effect on PRV. Addition of GCP at different times of the virus life cycle mainly led to the inhibition of the attachment and internalization of PRV but does not affect viral replication and release. Our findings suggest that GCP has potential as a drug against PRV infection.


Virus-like attachment sites as structural landmarks of plants retrotransposons.

  • Edgar Andres Ochoa Cruz‎ et al.
  • Mobile DNA‎
  • 2016‎

The genomic data available nowadays has enabled the study of repetitive sequences and their relationship to viruses. Among them, long terminal repeat retrotransposons (LTR-RTs) are the largest component of most plant genomes, the Gypsy and Copia superfamilies being the most common. Recently it has been found that Del lineage, an LTR-RT of Gypsy superfamily, has putative virus-like attachment (vl-att) sites. This signature, originally described for retroviruses, is recognized by retroviral integrase conferring specificity to the integration process.


Beyond attachment: Roles of DC-SIGN in dengue virus infection.

  • Ping Liu‎ et al.
  • Traffic (Copenhagen, Denmark)‎
  • 2017‎

Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), a C-type lectin expressed on the plasma membrane by human immature dendritic cells, is a receptor for numerous viruses including Ebola, SARS and dengue. A controversial question has been whether DC-SIGN functions as a complete receptor for both binding and internalization of dengue virus (DENV) or whether it is solely a cell surface attachment factor, requiring either hand-off to another receptor or a co-receptor for internalization. To examine this question, we used 4 cell types: human immature dendritic cells and NIH3T3 cells expressing either wild-type DC-SIGN or 2 internalization-deficient DC-SIGN mutants, in which either the 3 cytoplasmic internalization motifs are silenced by alanine substitutions or the cytoplasmic region is truncated. Using confocal and super-resolution imaging and high content single particle tracking, we investigated DENV binding, DC-SIGN surface transport, endocytosis, as well as cell infectivity. DC-SIGN was found colocalized with DENV inside cells suggesting hand-off at the plasma membrane to another receptor did not occur. Moreover, all 3 DC-SIGN molecules on NIH3T3 cells supported cell infection. These results imply the involvement of a co-receptor because cells expressing the internalization-deficient mutants could still be infected.


The Molecular Mechanism of Cellular Attachment for an Archaeal Virus.

  • Ross Hartman‎ et al.
  • Structure (London, England : 1993)‎
  • 2019‎

Sulfolobus turreted icosahedral virus (STIV) is a model archaeal virus and member of the PRD1-adenovirus lineage. Although STIV employs pyramidal lysis structures to exit the host, knowledge of the viral entry process is lacking. We therefore initiated studies on STIV attachment and entry. Negative stain and cryoelectron micrographs showed virion attachment to pili-like structures emanating from the Sulfolobus host. Tomographic reconstruction and sub-tomogram averaging revealed pili recognition by the STIV C381 turret protein. Specifically, the triple jelly roll structure of C381 determined by X-ray crystallography shows that pilus recognition is mediated by conserved surface residues in the second and third domains. In addition, the STIV petal protein (C557), when present, occludes the pili binding site, suggesting that it functions as a maturation protein. Combined, these results demonstrate a role for the namesake STIV turrets in initial cellular attachment and provide the first molecular model for viral attachment in the archaeal domain of life.


The role of cellular adhesion molecules in virus attachment and entry.

  • David Bhella‎
  • Philosophical transactions of the Royal Society of London. Series B, Biological sciences‎
  • 2015‎

As obligate intracellular parasites, viruses must traverse the host-cell plasma membrane to initiate infection. This presents a formidable barrier, which they have evolved diverse strategies to overcome. Common to all entry pathways, however, is a mechanism of specific attachment to cell-surface macromolecules or 'receptors'. Receptor usage frequently defines viral tropism, and consequently, the evolutionary changes in receptor specificity can lead to emergence of new strains exhibiting altered pathogenicity or host range. Several classes of molecules are exploited as receptors by diverse groups of viruses, including, for example, sialic acid moieties and integrins. In particular, many cell-adhesion molecules that belong to the immunoglobulin-like superfamily of proteins (IgSF CAMs) have been identified as viral receptors. Structural analysis of the interactions between viruses and IgSF CAM receptors has not shown binding to specific features, implying that the Ig-like fold may not be key. Both proteinaceous and enveloped viruses exploit these proteins, however, suggesting convergent evolution of this trait. Their use is surprising given the usually occluded position of CAMs on the cell surface, such as at tight junctions. Nonetheless, the reason for their widespread involvement in virus entry most probably originates in their functional rather than structural characteristics.


ADAM17 is an essential attachment factor for classical swine fever virus.

  • Fei Yuan‎ et al.
  • PLoS pathogens‎
  • 2021‎

Classical swine fever virus (CSFV) is an important pathogen in the swine industry. Virion attachment is mediated by envelope proteins Erns and E2, and E2 is indispensable. Using a pull-down assay with soluble E2 as the bait, we demonstrated that ADAM17, a disintegrin and metalloproteinase 17, is essential for CSFV entry. Loss of ADAM17 in a permissive cell line eliminated E2 binding and viral entry, but compensation with pig ADAM17 cDNA completely rescued these phenotypes. Similarly, ADAM17 silencing in primary porcine fibroblasts significantly impaired virus infection. In addition, human and mouse ADAM17, which is highly homologous to pig ADAM17, also mediated CSFV entry. The metalloproteinase domain of ADAM17 bound directly to E2 protein in a zinc-dependent manner. A surface exposed region within this domain was mapped and shown to be critical for CSFV entry. These findings clearly demonstrate that ADAM17 serves as an essential attachment factor for CSFV.


Structure and supramolecular organization of the canine distemper virus attachment glycoprotein.

  • David Kalbermatter‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Canine distemper virus (CDV) is an enveloped RNA morbillivirus that triggers respiratory, enteric, and high incidence of severe neurological disorders. CDV induces devastating outbreaks in wild and endangered animals as well as in domestic dogs in countries associated with suboptimal vaccination programs. The receptor-binding tetrameric attachment (H)-protein is part of the morbilliviral cell entry machinery. Here, we present the cryo-electron microscopy (cryo-EM) structure and supramolecular organization of the tetrameric CDV H-protein ectodomain. The structure reveals that the morbilliviral H-protein is composed of three main domains: stalk, neck, and heads. The most unexpected feature was the inherent asymmetric architecture of the CDV H-tetramer being shaped by the neck, which folds into an almost 90° bent conformation with respect to the stalk. Consequently, two non-contacting receptor-binding H-head dimers, which are also tilted toward each other, are located on one side of an intertwined four helical bundle stalk domain. Positioning of the four protomer polypeptide chains within the neck domain is guided by a glycine residue (G158), which forms a hinge point exclusively in two protomer polypeptide chains. Molecular dynamics simulations validated the stability of the asymmetric structure under near physiological conditions and molecular docking showed that two receptor-binding sites are fully accessible. Thus, this spatial organization of the CDV H-tetramer would allow for concomitant protein interactions with the stalk and head domains without steric clashes. In summary, the structure of the CDV H-protein ectodomain provides new insights into the morbilliviral cell entry system and offers a blueprint for next-generation structure-based antiviral drug discovery.


Emerging Chikungunya Virus Variants at the E1-E1 Interglycoprotein Spike Interface Impact Virus Attachment and Inflammation.

  • Margarita V Rangel‎ et al.
  • Journal of virology‎
  • 2022‎

Chikungunya virus (CHIKV) is a reemerging arthropod-borne alphavirus and a serious threat to human health. Therefore, efforts toward elucidating how this virus causes disease and the molecular mechanisms underlying steps of the viral replication cycle are crucial. Using an in vivo transmission system that allows intrahost evolution, we identified an emerging CHIKV variant carrying a mutation in the E1 glycoprotein (V156A) in the serum of mice and saliva of mosquitoes. E1 V156A has since emerged in humans during an outbreak in Brazil, cooccurring with a second mutation, E1 K211T, suggesting an important role for these residues in CHIKV biology. Given the emergence of these variants, we hypothesized that they function to promote CHIKV infectivity and subsequent disease. Here, we show that E1 V156A and E1 K211T modulate virus attachment and fusion and impact binding to heparin, a homolog of heparan sulfate, a key entry factor on host cells. These variants also exhibit differential neutralization by antiglycoprotein monoclonal antibodies, suggesting structural impacts on the particle that may be responsible for altered interactions at the host membrane. Finally, E1 V156A and E1 K211T exhibit increased titers in an adult arthritic mouse model and induce increased foot-swelling at the site of injection. Taken together, this work has revealed new roles for E1 where discrete regions of the glycoprotein are able to modulate cell attachment and swelling within the host. IMPORTANCE Alphaviruses represent a growing threat to human health worldwide. The reemerging alphavirus chikungunya virus (CHIKV) has rapidly spread to new geographic regions in the last several decades, causing overwhelming outbreaks of disease, yet there are no approved vaccines or therapeutics. The CHIKV glycoproteins are key determinants of CHIKV adaptation and virulence. In this study, we identify and characterize the emerging E1 glycoprotein variants, V156A and K211T, that have since emerged in nature. We demonstrate that E1 V156A and K211T function in virus attachment to cells, a role that until now has only been attributed to specific residues of the CHIKV E2 glycoprotein. We also demonstrate E1 V156A and K211T increase foot-swelling of the ipsilateral foot in mice infected with these variants. Observing that these variants and other pathogenic variants occur at the E1-E1 interspike interface, we highlight this structurally important region as critical for multiple steps during CHIKV infection. Together, these studies further define the function of E1 in CHIKV infection and can inform the development of therapeutic or preventative strategies.


Cecropin P1 inhibits porcine reproductive and respiratory syndrome virus by blocking attachment.

  • Chunhe Guo‎ et al.
  • BMC microbiology‎
  • 2014‎

Porcine reproductive and respiratory syndrome virus (PRRSV) is a continuous threat to the pig industry, causing high economic losses worldwide. Current vaccines have specific limitations in terms of their safety and efficacy, so the development of novel antiviral drugs is urgently required. The aim of this study was to evaluate the inhibitory effects and underlying molecular mechanisms of the antimicrobial peptide cecropin P1 (CP1) against PRRSV infection in vitro.


Characterization of avian influenza virus attachment patterns to human and pig tissues.

  • Per Eriksson‎ et al.
  • Scientific reports‎
  • 2018‎

Wild birds of Anseriformes and Charadriiformes are natural reservoirs of influenza A viruses (IAVs). Occasionally, IAVs transmit and adapt to mammalian hosts, and are maintained as epidemic strains in their new hosts. Viral adaptions to mammalian hosts include altered receptor preference of host epithelial sialylated oligosaccharides from terminal α2,3-linked sialic acid (SA) towards α2,6-linked SA. However, α2,3-linked SA has been found in human respiratory tract epithelium, and human infections by avian IAVs (AIVs) have been reported. To further explore the attachment properties of AIVs, four AIVs of different subtypes were investigated on human and pig tissues using virus histochemistry. Additionally, glycan array analysis was performed for further characterization of IAVs' receptor structure tropism. Generally, AIV attachment was more abundant to human tissues than to pig tissues. The attachment pattern was very strong to human conjunctiva and upper respiratory tract, but variable to the lower respiratory tract. AIVs mainly attached to α2,3-linked SA, but also to combinations of α2,3- and α2,6-linked SA. The low attachment of these AIV isolates to pig tissues, but high attachment to human tissues, addresses the question whether AIVs in general require passage through pigs to obtain adaptions towards mammalian receptor structures.


CD36 is a co-receptor for hepatitis C virus E1 protein attachment.

  • Jun-Jun Cheng‎ et al.
  • Scientific reports‎
  • 2016‎

The cluster of differentiation 36 (CD36) is a membrane protein related to lipid metabolism. We show that HCV infection in vitro increased CD36 expression in either surface or soluble form. HCV attachment was facilitated through a direct interaction between CD36 and HCV E1 protein, causing enhanced entry and replication. The HCV co-receptor effect of CD36 was independent of that of SR-BI. CD36 monoclonal antibodies neutralized the effect of CD36 and reduced HCV replication. CD36 inhibitor sulfo-N-succinimidyl oleate (SSO), which directly bound CD36 but not SR-BI, significantly interrupted HCV entry, and therefore inhibited HCV replication. SSO's antiviral effect was seen only in HCV but not in other viruses. SSO in combination with known anti-HCV drugs showed additional inhibition against HCV. SSO was considerably safe in mice. Conclusively, CD36 interacts with HCV E1 and might be a co-receptor specific for HCV entry; thus, CD36 could be a potential drug target against HCV.


Chikungunya Virus Strains from Each Genetic Clade Bind Sulfated Glycosaminoglycans as Attachment Factors.

  • Nicole McAllister‎ et al.
  • Journal of virology‎
  • 2020‎

Chikungunya virus (CHIKV) is an arthritogenic alphavirus that causes debilitating musculoskeletal disease. CHIKV displays broad cell, tissue, and species tropism, which may correlate with the attachment factors and entry receptors used by the virus. Cell surface glycosaminoglycans (GAGs) have been identified as CHIKV attachment factors. However, the specific types of GAGs and potentially other glycans to which CHIKV binds and whether there are strain-specific differences in GAG binding are not fully understood. To identify the types of glycans bound by CHIKV, we conducted glycan microarray analyses and discovered that CHIKV preferentially binds GAGs. Microarray results also indicate that sulfate groups on GAGs are essential for CHIKV binding and that CHIKV binds most strongly to longer GAG chains of heparin and heparan sulfate. To determine whether GAG binding capacity varies among CHIKV strains, a representative strain from each genetic clade was tested. While all strains directly bound to heparin and chondroitin sulfate in enzyme-linked immunosorbent assays (ELISAs) and depended on heparan sulfate for efficient cell binding and infection, we observed some variation by strain. Enzymatic removal of cell surface GAGs and genetic ablation that diminishes GAG expression reduced CHIKV binding and infectivity of all strains. Collectively, these data demonstrate that GAGs are the preferred glycan bound by CHIKV, enhance our understanding of the specific GAG moieties required for CHIKV binding, define strain differences in GAG engagement, and provide further evidence for a critical function of GAGs in CHIKV cell attachment and infection.IMPORTANCE Alphavirus infections are a global health threat, contributing to outbreaks of disease in many parts of the world. Recent epidemics caused by CHIKV, an arthritogenic alphavirus, resulted in more than 8.5 million cases as the virus has spread into new geographic regions, including the Western Hemisphere. CHIKV causes disease in the majority of people infected, leading to severe and debilitating arthritis. Despite the severity of CHIKV disease, there are no licensed therapeutics. Since attachment factors and receptors are determinants of viral tropism and pathogenesis, understanding these virus-host interactions can enhance our knowledge of CHIKV infection. We analyzed over 670 glycans and identified GAGs as the main glycan bound by CHIKV. We defined specific GAG components required for CHIKV binding and assessed strain-specific differences in GAG binding capacity. These studies provide insight about cell surface molecules that CHIKV binds, which could facilitate the development of antiviral therapeutics targeting the CHIKV attachment step.


Heat Shock Protein Member 8 Is an Attachment Factor for Infectious Bronchitis Virus.

  • Pengpeng Zhu‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Although infectious bronchitis virus (IBV) is the first coronavirus identified, little is known about which membrane protein of host cells could interact with IBV spike protein and facilitate the infection by the virus. In this study, by using a monoclonal antibody to the S1 protein of IBV M41 strain, we found that heat shock protein member 8 (HSPA8) could interact with spike protein of IBV. HSPA8 was found to be present on the cell membrane and chicken tissues, with highest expression level in the kidney. Results of co-IP and GST-pull-down assays indicated that the receptor binding domain (RBD) of IBV M41 could interact with HSPA8. The results of binding blocking assay and infection inhibition assay showed that recombinant protein HSPA8 and antibody to HSPA8 could inhibit IBV M41 infection of chicken embryonic kidney (CEK) cells. Further, we found that HSPA8 interacted with the N-terminal 19-272 amino acids of S1 of IBV Beaudette, H120 and QX strains and HSPA8 from human and pig also interacted with IBV M41-RBD. Finally the results of binding blocking assay and infection inhibition assay showed that recombinant HSPA8 protein and antibody to HSPA8 could inhibit IBV Beaudette strain infection of Vero cells that were treated with heparanase to remove heparan sulfate from the cell surface. Taken together, our results indicate that HSPA8 is a novel host factor involved in IBV infection.


Antiviral Effect of Ginsenosides rk1 against Influenza a Virus Infection by Targeting the Hemagglutinin 1-Mediated Virus Attachment.

  • Xia Yang‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Influenza A virus (IAV) infections have been a serious hazard to public health everywhere. With the growing concern of drug-resistant IAV strains, there is an urgent need for novel anti-IAV medications, especially those with alternative mechanisms of action. Hemagglutinin (HA), an IAV glycoprotein, plays critical roles in the early stage of virus infection, including receptor binding and membrane fusion, making it a good target for developing anti-IAV drugs. Panax ginseng is a widely used herb in traditional medicine with extensive biological effects in various disease models, and its extract was reported to show protection in IAV-infected mice. However, the main effective anti-IAV constituents in panax ginseng remain unclear. Here, we report that ginsenoside rk1 (G-rk1) and G-rg5, out of the 23 screened ginsenosides, exhibit significant antiviral effects against 3 different IAV subtypes (H1N1, H5N1, and H3N2) in vitro. Mechanistically, G-rk1 blocked IAV binding to sialic acid in a hemagglutination inhibition (HAI) assay and an indirect ELISA assay; more importantly, we showed that G-rk1 interacted with HA1 in a dose-dependent manner in a surface plasmon resonance (SPR) analysis. Furthermore, G-rk1 treatment by intranasal inoculation effectively reduced the weight loss and mortality of mice challenged with a lethal dose of influenza virus A/Puerto Rico/8/34 (PR8). In conclusion, our findings reveal for the first time that G-rk1 possesses potent anti-IAV effects in vitro and in vivo. We have also identified and characterized with a direct binding assay a novel ginseng-derived IAV HA1 inhibitor for the first time, which could present potential approaches to prevent and treat IAV infections.


Mechanism of Enhanced Immature Dengue Virus Attachment to Endosomal Membrane Induced by prM Antibody.

  • Melissa Wirawan‎ et al.
  • Structure (London, England : 1993)‎
  • 2019‎

Dengue virus (DENV) particles are released from cells in different maturation states. Fully immature DENV (immDENV) is generally non-infectious, but can become infectious when complexed with anti-precursor membrane (prM) protein antibodies. It is unknown how anti-prM antibody-coated particles can undergo membrane fusion since the prM caps the envelope (E) protein fusion loop. Here, we determined cryoelectron microscopy (cryo-EM) maps of the immDENV:anti-prM complex at different pH values, mimicking the extracellular (pH 8.0) or endosomal (pH 5.0) environments. At pH 5.0, there are two structural classes with fewer antibodies bound than at pH 8.0. These classes may represent different maturation states. Molecular simulations, together with the measured high-affinity pr:antibody interaction (versus the weak pr:E interaction) and also the low pH cryo-EM structures, suggest how antibody:pr complex can dislodge from the E protein at low pH. This exposes the E protein fusion loop enhancing virus interaction with endosomes.


PSGL-1 restricts HIV-1 infectivity by blocking virus particle attachment to target cells.

  • Yajing Fu‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric, mucin-like, 120-kDa glycoprotein that binds to P-, E-, and L-selectins. PSGL-1 is expressed primarily on the surface of lymphoid and myeloid cells and is up-regulated during inflammation to mediate leukocyte tethering and rolling on the surface of endothelium for migration into inflamed tissues. Although it has been reported that PSGL-1 expression inhibits HIV-1 replication, the mechanism of PSGL-1-mediated anti-HIV activity remains to be elucidated. Here we report that PSGL-1 in virions blocks the infectivity of HIV-1 particles by preventing the binding of particles to target cells. This inhibitory activity is independent of the viral glycoprotein present on the virus particle; the binding of particles bearing the HIV-1 envelope glycoprotein or vesicular stomatitis virus G glycoprotein or even lacking a viral glycoprotein is impaired by PSGL-1. Mapping studies show that the extracellular N-terminal domain of PSGL-1 is necessary for its anti-HIV-1 activity, and that the PSGL-1 cytoplasmic tail contributes to inhibition. In addition, we demonstrate that the PSGL-1-related monomeric E-selectin-binding glycoprotein CD43 also effectively blocks HIV-1 infectivity. HIV-1 infection, or expression of either Vpu or Nef, down-regulates PSGL-1 from the cell surface; expression of Vpu appears to be primarily responsible for enabling the virus to partially escape PSGL-1-mediated restriction. Finally, we show that PSGL-1 inhibits the infectivity of other viruses, such as murine leukemia virus and influenza A virus. These findings demonstrate that PSGL-1 is a broad-spectrum antiviral host factor with a unique mechanism of action.


Lip balm drying promotes virus attachment: Characterization of lip balm coatings and XDLVO modeling.

  • Xunhao Wang‎ et al.
  • Journal of colloid and interface science‎
  • 2021‎

Drying-induced decrease in lip balm surface energy enhances virus adhesion due to the emergence of strong hydrophobic colloid-surface interactions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: