Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 74 papers

Strategic Decoy Peptides Interfere with MSI1/AGO2 Interaction to Elicit Tumor Suppression Effects.

  • Yi-Ping Yang‎ et al.
  • Cancers‎
  • 2022‎

Peptide drugs that target protein-protein interactions have attracted mounting research efforts towards clinical developments over the past decades. Increasing reports have indicated that expression of Musashi 1 (MSI1) is tightly correlated to high grade of cancers as well as enrichment of cancer stem cells. Treatment failure in malignant tumors glioblastoma multiform (GBM) had also been correlated to CSC-regulating properties of MSI1. It is thus imperative to develop new therapeutics that could effectively improve current regimens used in clinics. MSI1 and AGO2 are two emerging oncogenic molecules that both contribute to GBM tumorigenesis through mRNA regulation of targets involved in apoptosis and cell cycle. In this study, we designed peptide arrays covering the C-terminus of MSI1 and identified two peptides (Pep#11 and Pep#26) that could specifically interfere with the binding with AGO2. Our Biacore analyses ascertained binding between the identified peptides and AGO2. Recombinant reporter system Gaussian luciferase and fluorescent bioconjugate techniques were employed to determine biological functions and pharmacokinetic characteristics of these two peptides. Our data suggested that Pep#11 and Pep#26 could function as decoy peptides by mimicking the interaction function of MSI1 with its binding partner AGO2 in vitro and in vivo. Further experiments using GMB animal models corroborated the ability of Pep#11 and Pep#26 in disrupting MSI1/AGO2 interaction and consequently anti-tumorigenicity and prolonged survival rates. These striking therapeutic efficacies orchestrated by the synthetic peptides were attributed to the decoy function to C-terminal MSI1, especially in malignant brain tumors and glioblastoma.


High-Dose Acetaminophen with N-acetylcysteine Rescue Inhibits M2 Polarization of Tumor-Associated Macrophages.

  • Allyn Bryan‎ et al.
  • Cancers‎
  • 2023‎

High-dose acetaminophen (AAP) with N-acetylcysteine (NAC) rescue is among the few treatments that has shown activity in phase I trials without achieving dose-limiting toxicity that has not progressed to evaluation in later line studies. While the anti-tumor effects of AAP/NAC appear not to be mediated by glutathione depletion and free radical injury, the mechanism of anti-tumor effects of AAP/NAC has not been definitively characterized. In vitro, the effects of AAP/NAC were evaluated on bone marrow derived macrophages. Effects of AAP on IL-4/STAT6 (M2) or IFN/LPS/STAT1 (M1) signaling and downstream gene and protein expression were studied. NAC reversed the AAP toxicity in the normal liver but did not reverse AAP cytotoxicity against tumor cells in vitro. AAP/NAC selectively inhibited IL-4-induced STAT6 phosphorylation but not IFN/LPS-induced STAT1 phosphorylation. Downstream, AAP/NAC inhibited IL-4 induction of M2-associated genes and proteins but did not inhibit the IFN/LPS induction of M1-associated genes and proteins. In vivo, AAP/NAC inhibited tumor growth in EF43.fgf4 and 4T1 triple-negative breast tumors. Flow cytometry of tumor-associated macrophages revealed that AAP/NAC selectively inhibited M2 polarization. The anti-tumor activity of high-dose AAP/NAC is lost in macrophage-depleted mouse syngeneic tumor models, suggesting a macrophage-dependent mechanism of action. In conclusion, our study is the first to show that high-dose AAP/NAC has profound effects on the tumor immune microenvironment that facilitates immune-mediated inhibition of tumor growth.


Clinicopathological and Molecular Profiles of Sporadic Microsatellite Unstable Colorectal Cancer with or without the CpG Island Methylator Phenotype (CIMP).

  • Shih-Ching Chang‎ et al.
  • Cancers‎
  • 2020‎

The 5'-C-phosphate-G-3' island methylator phenotype (CIMP) is a specific phenotype of colorectal cancer (CRC) associated with microsatellite instability-high (MSI-high) tumors.


Overall Survival for Esophageal Squamous Cell Carcinoma with Multiple Primary Cancers after Curative Esophagectomy-A Retrospective Single-Institution Study.

  • Ping-Chung Tsai‎ et al.
  • Cancers‎
  • 2022‎

Background: Advances in surgical techniques and treatment modalities have improved the outcomes of esophageal cancer, yet difficult decision making for physicians while encountering multiple primary cancers (MPCs) continues to exist. The aim of this study was to evaluate long-term survival for esophageal squamous cell carcinoma (SCC) associated with MPCs. Methods: Data from 544 patients with esophageal SCC who underwent surgery between 2005 and 2017 were reviewed to identify the presence of simultaneous or metachronous primary cancers. The prognostic factors for overall survival (OS) were analyzed. Results: Three hundred and ninety-seven patients after curative esophagectomy were included, with a median observation time of 44.2 months (range 2.6−178.6 months). Out of 52 patients (13.1%) with antecedent/synchronous cancers and 296 patients without MPCs (control group), 49 patients (12.3%) developed subsequent cancers after surgery. The most common site of other primary cancers was the head and neck (69/101; 68.3%), which showed no inferiority in OS. Sex and advanced clinical stage (III/IV) were independent risk factors (p = 0.031 and p < 0.001, respectively). Conclusion: Once curative esophagectomy can be achieved, surgery should be selected as a potential therapeutic approach if indicated, even with antecedent/synchronous MPCs. Subsequent primary cancers were often observed in esophageal SCC, and optimal surveillance planning was recommended.


How May Ramucirumab Help Improve Treatment Outcome for Patients with Gastrointestinal Cancers?

  • Ming-Huang Chen‎ et al.
  • Cancers‎
  • 2021‎

GI cancers are characterized by high recurrence rates and a dismal prognosis and there is an urgent need for new therapeutic approaches. This is a narrative review designed to provide a summary of the efficacy as measured by overall survival, progression free survival, and safety data from phase 3 randomized controlled GI clinical trials of ramucirumab including those from important pre-specified patient subgroups and evidence from real clinical practice worldwide. Quality of life (QOL) is discussed where data are available. Our aim was to summarize the efficacy and safety of ramucirumab in the treatment of GI cancers using these existing published data with a view to demonstrating how ramucirumab may help improve treatment outcome for patients with GI cancers. The data indicate that ramucirumab is efficacious, safe, and tolerable across the intent-to-treat patient populations as a whole and across several pre-specified subgroups, even those whose disease is traditionally more difficult to treat. Furthermore, survival outcomes observed in real-world clinical practice demonstrate similar data from phase 3 clinical trials even in patients with complications, suggesting that the benefits of ramucirumab translate in actual clinical practice.


Clinicopathological and Molecular Features of Patients with Early and Late Recurrence after Curative Surgery for Colorectal Cancer.

  • Yuan-Tzu Lan‎ et al.
  • Cancers‎
  • 2021‎

Few reports have investigated genetic alterations between patients with early and late recurrence following curative surgery for colorectal cancer (CRC).


Plasma Level of Circular RNA hsa_circ_0000190 Correlates with Tumor Progression and Poor Treatment Response in Advanced Lung Cancers.

  • Yung-Hung Luo‎ et al.
  • Cancers‎
  • 2020‎

Lung cancer (LC) causes the majority of cancer-related deaths. Circular RNAs (circRNAs) were reported to play roles in cancers by targeting pro- and anti-oncogenic miRNAs. However, the mechanisms of circRNAs in LC progression and their prognostic value of treatment response remain unclear. By using next generation sequencing (NGS) of LC cell lines' transcriptomes, we identified highly overexpressed hsa_circ_0000190 and hsa_circ_000164 as potential biomarkers. By using the highly sensitive RT-ddPCR method, these circRNAs were shown to be secreted by cell lines and were detected in human blood. Clinical validation by RT-ddPCR was carried out on 272 (231 LC patients and 41 controls) blood samples. Higher hsa_circ_0000190 levels were associated with larger tumor size (p < 0.0001), worse histological type of adenocarcinoma (p = 0.0028), later stage (p < 0.0001), more distant metastatic organs (p = 0.0039), extrathoracic metastasis (p = 0.0004), and poor survival (p = 0.047) and prognosis. Using liquid biopsy-based RT-ddPCR, we discovered the correlation between increased hsa_circ_0000190 plasma level (p < 0.0001) and higher programmed death-ligand 1 (PD-L1) level in tumor (p = 0.0283). Notably, long-term follow-up of the immunotherapy treated cases showed that upregulated plasma hsa_circ_0000190 level correlated with poor response to systemic therapy and immunotherapy (p = 0.0002, 0.0058, respectively). Secretory circRNAs are detectable in blood by LB-based RT-ddPCR and may serve as blood-based biomarkers to monitor disease progression and treatment efficacy.


Association of ATG4B and Phosphorylated ATG4B Proteins with Tumorigenesis and Prognosis in Oral Squamous Cell Carcinoma.

  • Pei-Feng Liu‎ et al.
  • Cancers‎
  • 2019‎

Oral squamous cell carcinoma (OSCC) is one of the major leading causes of cancer death worldwide due to the limited availability of biomarkers and therapeutic targets. Autophagy related protease 4B (ATG4B) is an essential protease for the autophagy machinery, and ATG4B phosphorylation at Ser383/392 increases its proteolytic activity. ATG4B expression and activation are crucial for cancer cell proliferation and invasion. However, the clinical relevance of ATG4B and phospho-Ser383/392-ATG4B for OSCC remains unknown, particularly in buccal mucosal SCC (BMSCC) and tongue SCC (TSCC). With a tissue microarray comprising specimens from 498 OSCC patients, including 179 BMSCC and 249 TSCC patients, we found that the protein levels of ATG4B and phospho-Ser383/392-ATG4B were elevated in the tumor tissues of BMSCC and TSCC compared with those in adjacent normal tissues. High protein levels of ATG4B were significantly associated with worse disease-specific survival (DSS) in OSCC patients, particularly in patients with tumors at advanced stages. In contrast, phospho-Ser383/392-ATG4B expression was correlated with poor disease-free survival (DFS) in TSCC patients. Moreover, ATG4B protein expression was positively correlated with phospho-Ser383/392-ATG4B expression in both BMSCC and TSCC. However, high coexpression levels of ATG4B and phospho-Ser383/392-ATG4B were associated with poor DFS only in TSCC patients, whereas they had no significant association with DSS in BMSCC and TSCC patients. In addition, silencing ATG4B with an antisense oligonucleotide (ASO) or small interfering RNA (siRNA) diminished cell proliferation of TW2.6 and SAS oral cancer cells. Further, knockdown of ATG4B reduced cell migration and invasion of oral cancer cells. Taken together, these findings suggest that ATG4B might be a biomarker for diagnosis/prognosis of OSCC and a potential therapeutic target for OSCC patients.


A H2AX⁻CARP-1 Interaction Regulates Apoptosis Signaling Following DNA Damage.

  • Sreeja C Sekhar‎ et al.
  • Cancers‎
  • 2019‎

Cell Cycle and Apoptosis Regulatory Protein (CARP-1/CCAR1) is a peri-nuclear phosphoprotein that regulates apoptosis via chemotherapeutic Adriamycin (doxorubicin) and a novel class of CARP-1 functional mimetic (CFM) compounds. Although Adriamycin causes DNA damage, data from Comet assays revealed that CFM-4.16 also induced DNA damage. Phosphorylation of histone 2AX (γH2AX) protein is involved in regulating DNA damage repair and apoptosis signaling. Adriamycin or CFM-4.16 treatments inhibited cell growth and caused elevated CARP-1 and γH2AX in human breast (HBC) and cervical cancer (HeLa) cells. In fact, a robust nuclear or peri-nuclear co-localization of CARP-1 and γH2AX occurred in cells undergoing apoptosis. Knock-down of CARP-1 diminished γH2AX, their co-localization, and apoptosis in CFM-4.16- or Adriamycin-treated cells. We found that CARP-1 directly binds with H2AX, and H2AX interacted with CARP-1, but not CARP-1 (Δ600⁻652) mutant. Moreover, cells expressing CARP-1 (Δ600⁻652) mutant were resistant to apoptosis, and had diminished levels of γH2AX, when compared with cells expressing wild-type CARP-1. Mutagenesis studies revealed that H2AX residues 1⁻35 harbored a CARP-1-binding epitope, while CARP-1 amino acids 636⁻650 contained an H2AX-interacting epitope. Surface plasmon resonance studies revealed that CARP-1 (636⁻650) peptide bound with H2AX (1⁻35) peptide with a dissociation constant (Kd) of 127 nM. Cells expressing enhanced GFP (EGFP)-tagged H2AX (1⁻35) peptide or EGFP-tagged CARP-1 (636⁻650) peptide were resistant to inhibition by Adriamycin or CFM-4.16. Treatment of cells with transactivator of transcription (TAT)-tagged CARP-1 (636⁻650) peptide resulted in a moderate, statistically significant abrogation of Adriamycin-induced growth inhibition of cancer cells. Our studies provide evidence for requirement of CARP-1 interaction with H2AX in apoptosis signaling by Adriamycin and CFM compounds.


Characterization of Driver Mutations in Anaplastic Thyroid Carcinoma Identifies RAS and PIK3CA Mutations as Negative Survival Predictors.

  • Wei-An Lai‎ et al.
  • Cancers‎
  • 2020‎

Anaplastic thyroid carcinoma (ATC) is rare but highly aggressive. We investigated the association of selected driver mutations, including BRAF, RAS, PIK3CA, TERT promoter, TP53, POLE, and mismatch repair deficiency (MMR-D) with the clinicopathological features of ATC to identify prognostic and predictive biomarkers. Thirty-nine retrospective cases from pathology archives were enrolled for clinicopathology analysis and immunohistochemistry, and 27 cases had sufficient specimens for further molecular testing using targeted next-generation sequencing and mass spectrometry. BRAFV600E and RAS mutations were identified in 25.9% and 40.7% of ATC, respectively. BRAFV600E mutation was significantly associated with coexisting papillary thyroid carcinoma (p = 0.009) and RAS mutations with female gender (p = 0.012). In univariant analysis, the non-BRAF/RAS tumors were significantly associated with the presence of a sarcomatoid pattern (p = 0.045). PIK3CA, TERT promoter, and TP53 mutations were identified in 14.8%, 81.5%, and 70.4% of cases, respectively. No MMR-D or POLE mutations were detected. In survival analyses, RAS and PIK3CA mutations were significantly associated with inferior outcomes (p = 0.03 and p = 0.006, respectively). In conclusion, driver mutations in ATC are associated with distinct clinicopathological features. RAS and PIK3CA mutations were negative predictors for patient survival. Emerging therapeutic agents targeting BRAF, RAS, and PI3 kinase may benefit a substantial proportion of ATC patients.


Exosomal HMGB1 Promoted Cancer Malignancy.

  • Jiaan-Der Wang‎ et al.
  • Cancers‎
  • 2021‎

Reciprocal crosstalk between platelets and malignancies underscores the potential of antiplatelet therapy in cancer treatment. In this study, we found that human chronic myeloid leukemia K562 cell-differentiated megakaryocytes and murine platelets produced bioactive substances and these are released into the extracellular space, partly in their exosomal form. High-mobility group box 1 (HMGB1) is a type of exosomal cargo, and the antiplatelet drugs aspirin and dipyridamole interfered with its incorporation into the exosomes. Those released substances and exosomes, along with exogenous HMGB1, promoted cancer cell survival and protected cells from doxorubicin cytotoxicity. In a tumor-bearing model established using murine Lewis lung carcinoma (LLC) cells and C57BL/6 mice, the tumor suppressive effect of dipyridamole correlated well with decreased circulating white blood cells, soluble P-selectin, TGF-β1 (Transforming Growth Factor-β1), exosomes, and exosomal HMGB1, as well as tumor platelet infiltration. Exosome release inhibitor GW4869 exhibited suppressive effects as well. The suppressive effect of dipyridamole on cancer cell survival was paralleled by a reduction of HMGB1/receptor for advanced glycation end-products axis, and proliferation- and migration-related β-catenin, Yes-associated protein 1, Runt-related transcription factor 2, and TGF- β1/Smad signals. Therefore, exosomes and exosomal HMGB1 appear to have roles in platelet-driven cancer malignancy and represent targets of antiplatelet drugs in anticancer treatment.


The Clinicopathological Characteristics And Genetic Alterations of Signet-ring Cell Carcinoma in Gastric Cancer.

  • Kuo-Hung Huang‎ et al.
  • Cancers‎
  • 2020‎

Signet-ring cell carcinoma (SRC) in advanced gastric cancer (GC) is often associated with more invasiveness and a worse prognosis than other cell types. The genetic alterations associated with gastric carcinogenesis in SRC are still unclear. In this study, 441 GC patients receiving curative surgery for GC between 2005 and 2013 were enrolled. The clinicopathological characteristics and genetic alterations of GC patients with and without SRC were compared. Among the 441 GC patients, 181 had SRC. For early GC, patients with SRC had more tumors located in the middle and lower stomach, more infiltrating tumors and better overall survival (OS) rates than those without SRC. For advanced GC, patients with SRC had more scirrhous type tumors, more PIK3CA amplifications, fewer microsatellite instability-high (MSI-H) tumors, more peritoneal recurrences and worse 5-year OS rates than those without SRC. For advanced GC with SRC, patients with peritoneal recurrence tended to have PD-L1 expression. For advanced GC without SRC, patients with liver metastasis tended to have PD-L1 expression, PI3K/AKT pathway mutations, TP53 mutations and MSI-H tumors. For advanced GC, PD-L1 expression was associated with peritoneal recurrence in SRC tumors, while non-SRC tumors with liver metastasis were likely to have PI3K/AKT pathway mutations, TP53 mutations and PD-L1 expression; immunotherapy and targeted therapy may be beneficial for these patients.


Musashi-1 Regulates MIF1-Mediated M2 Macrophage Polarization in Promoting Glioblastoma Progression.

  • Yi-Ping Yang‎ et al.
  • Cancers‎
  • 2021‎

Glioblastoma (GBM) is the most malignant brain tumor which is characterized by high proliferation and migration capacity. The poor survival rate has been attributed to limitations of the current standard therapies. The search for novel biological targets that can effectively hamper tumor progression remains extremely challenging. Previous studies indicated that tumor-associated macrophages (TAMs) are the abundant elements in the tumor microenvironment that are closely implicated in glioma progression and tumor pathogenesis. M2 type TAMs are immunosuppressive and promote GBM proliferation. RNA-binding protein Musashi-1 (MSI1) has recently been identified as a marker of neural stem/progenitor cells, and its high expression has been shown to correlate with the growth of GBM. Nevertheless, the relationship between MSI1 and TAMs in GBM is still unknown. Thus, in our present study, we aimed to investigate the molecular interplay between MSI1 and TAMs in contributing to GBM tumorigenesis. Our data revealed that the secretion of macrophage inhibitory factor 1 (MIF1) is significantly upregulated by MSI1 overexpression in vitro. Importantly, M2 surface markers of THP-1-derived macrophages were induced by recombinant MIF1 and reduced by using MIF1 inhibitor (S,R)-3-(4-hHydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid (ISO-1). Furthermore, GBM tumor model data suggested that the tumor growth, MIF1 expression and M2 macrophage population were significantly downregulated when MSI1 expression was silenced in vivo. Collectively, our findings identified a novel role of MSI1 in the secretion of MIF1 and the consequent polarization of macrophages into the M2 phenotype in promoting GBM tumor progression.


Varlitinib Downregulates HER/ERK Signaling and Induces Apoptosis in Triple Negative Breast Cancer Cells.

  • Chun-Yu Liu‎ et al.
  • Cancers‎
  • 2019‎

Triple-negative breast cancer (TNBC) is a complex disease associated with the aggressive phenotype and poor prognosis. TNBC harbors heterogeneous molecular subtypes with no approved specific targeted therapy. It has been reported that HER receptors are overexpressed in breast cancer including TNBC. In this study, we evaluated the efficacy of varlitinib, a reversible small molecule pan-HER inhibitor in TNBC. Our results showed that varlitinib reduced cell viability and induced cell apoptosis in most TNBC cell lines but not in MDA-MB-231 cells. MEK and ERK inhibition overcame resistance to varlitinib in MDA-MB-231 cells. Varlitinib inhibited HER signaling which led to inhibition of migration, invasion and mammosphere formation of TNBC cells as well as significant suppression of tumor growth of MDA-MB-468 xenograft mouse model. In summary, these results suggest that HER signaling plays an important role in TNBC progression and that pan-HER inhibition is potentially an effective treatment for TNBC patients.


The Long Noncoding RNA LOC441461 (STX17-AS1) Modulates Colorectal Cancer Cell Growth and Motility.

  • Jui-Ho Wang‎ et al.
  • Cancers‎
  • 2020‎

Colorectal carcinoma (CRC) is one of the most prevalent cancers worldwide and has a high mortality rate. Long noncoding RNAs (lncRNAs) have been noted to play critical roles in cell growth; cell apoptosis; and metastasis in CRC. This study determined that LOC441461 expression was significantly higher in CRC tissues than in adjacent normal mucosa. Pathway enrichment analysis of LOC441461-coexpressed genes revealed that LOC441461 was involved in biological functions related to cancer cell growth and motility. Knockdown of the LOC441461 expression significantly suppressed colon cancer cell growth by impairing cell cycle progression and inducing cell apoptosis. Furthermore, significantly higher LOC441461 expression was discovered in primary colon tumors and metastatic liver tumors than in the corresponding normal mucosa, and LOC441461 knockdown was noted to suppress colon cancer cell motility. Knockdown of LOC441461 expression suppressed the phosphorylation of MLC and LIMK1 through the inhibition of RhoA/ROCK signaling. Overall, LOC441461 was discovered to play an oncogenic role in CRC cell growth and motility through RhoA/ROCK signaling. Our findings provide new insights into the regulation of lncRNAs and their application in the treatment of colon cancer.


High Expression of MicroRNA-196a is Associated with Progression of Hepatocellular Carcinoma in Younger Patients.

  • Shen-Yung Wang‎ et al.
  • Cancers‎
  • 2019‎

MicroRNAs are small RNAs involved in various biological processes and cancer metastasis. miR-196a was associated with aggressive behaviors in several cancers. The role of miR-196a in hepatocellular carcinoma (HCC) metastasis remains unknown. This study aimed to examine the role of miR-196a in HCC progression. Expression of miR-196a was measured in 83 human HCC samples. The HCC patients with high miR-196a expression had younger ages, lower albumin levels, higher frequency with alpha-fetoprotein (AFP) levels ≥20 ng/mL, more macrovascular invasion, and non-early stages. Kaplan-Meier analysis showed that high miR-196a expression was associated with lower recurrence-free survival. Knockdown of miR-196a decreased transwell invasiveness, sphere formation, transendothelial invasion, and Slug, Twist, Oct4, and Sox2 expression, suppressed angiogenesis, and reduced sizes of xenotransplants and number of pulmonary metastasis. Down-regulation of miR-196a decreased Runx2 and osteopontin (OPN) levels. Knockdown of Runx2 in vitro resulted in comparable phenotypes with miR-196a down-regulation. Restoration of Runx2 in miR-196a-knockdown HCC reverted tumor phenotypes. This study showed that high expression of miR-196a is associated with HCC progression in a subset of younger patients. miR-196a mediates HCC progression via upregulation of Runx2, OPN, epithelial-mesenchymal transition (EMT) regulators, and stemness genes. We proposed that miR-196a can be used as a prognostic marker and a potential therapeutic target.


Kinome-Wide Screening with Small Interfering RNA Identified Polo-like Kinase 1 as a Key Regulator of Proliferation in Oral Cancer Cells.

  • Yih-Gang Goan‎ et al.
  • Cancers‎
  • 2019‎

Oral squamous cell carcinoma (OSCC) is one of the major leading causes of cancer-related death worldwide, with limited effective markers for diagnosis and therapy, which has caused a low overall survival rate in the past decades. Kinases play important roles in tumor development and malignancy in various types of cancer. However, little is known about the role of kinases in OSCC cells. In this study, an arrayed kinome small interfering RNA (siRNA) library was used to screen oral cancer cell lines and counter assayed with normal fibroblast cells to identify the genes required for cancer cell proliferation. We found that polo-like kinase 1 (PLK1) was one of the most potent genes required for OSCC cell proliferation. The knockdown of PLK1 with a siRNA or antisense oligonucleotide (ASO) consistently diminished cyclin-B1 (CCNB1) expression/phosphorylation and the G2-M phase transition. Similar effects were observed in cells treated with the PLK1 kinase inhibitor BI6727. Besides, The Cancer Genome Atlas (TCGA) analysis revealed that PLK1 was elevated in tumor tissues and associated with short survival in patients with OSCC. We also found that PLK1 expression was highly correlated with the expression of its downstream effector, CCNB1, in patients with OSCC. Coexpression of the two genes resulted in a poor prognosis of OSCC patients, particularly those in the advanced stages of OSCC. Taken together, our results suggest that PLK1 might be a diagnostic or therapeutic marker for OSCC.


Involvement of MicroRNA-296 in the Inhibitory Effect of Epigallocatechin Gallate against the Migratory Properties of Anoikis-Resistant Nasopharyngeal Carcinoma Cells.

  • Chien-Hung Lin‎ et al.
  • Cancers‎
  • 2020‎

Short noncoding endogenous RNAs, including microRNAs (miRNAs), are associated with the development and metastasis of multiple cancers. Epigallocatechin gallate (EGCG), the most active and abundant polyphenol in green tea, plays a crucial role in the modulation of miRNA expression, which is related to changes in cancer progression. In the present study, we explore whether EGCG exerts its suppressive effects on nasopharyngeal carcinoma (NPC) cells through miRNA regulation. The anoikis-resistant sphere-forming NPC cells grown under anchorage-independent conditions exhibit enhanced migratory properties, which were inhibited by EGCG treatment. The miR-296 level was lower in the anoikis-resistant cells than in the monolayer parental cells; however, miR-296 was significantly upregulated after EGCG treatment. We demonstrate that miR-296 is involved in the inhibitory effects of EGCG on the anoikis-resistant NPC cells through the downregulation of signal transducer and activator of transcription 3 (STAT3) activation. Our study is the first to demonstrate that EGCG inhibited the migratory properties of anoikis-resistant cells by modulating the expression of miRNA in NPC cells. Our results indicate the novel effects of EGCG on miRNA regulation to inhibit an invasive phenotype of NPC as well as the regulatory role of miR-296.


A Proof-of-Concept Inhibitor of Endothelial Lipase Suppresses Triple-Negative Breast Cancer Cells by Hijacking the Mitochondrial Function.

  • Rongze Yang‎ et al.
  • Cancers‎
  • 2022‎

Triple-negative breast cancer (TNBC) cells reprogram their metabolism to provide metabolic flexibility for tumor cell growth and survival in the tumor microenvironment. While our previous findings indicated that endothelial lipase (EL/LIPG) is a hallmark of TNBC, the precise mechanism through which LIPG instigates TNBC metabolism remains undefined. Here, we report that the expression of LIPG is associated with long non-coding RNA DANCR and positively correlates with gene signatures of mitochondrial metabolism-oxidative phosphorylation (OXPHOS). DANCR binds to LIPG, enabling tumor cells to maintain LIPG protein stability and OXPHOS. As one mechanism of LIPG in the regulation of tumor cell oxidative metabolism, LIPG mediates histone deacetylase 6 (HDAC6) and histone acetylation, which contribute to changes in IL-6 and fatty acid synthesis gene expression. Finally, aided by a relaxed docking approach, we discovered a new LIPG inhibitor, cynaroside, that effectively suppressed the enzyme activity and DANCR in TNBC cells. Treatment with cynaroside inhibited the OXPHOS phenotype of TNBC cells, which severely impaired tumor formation. Taken together, our study provides mechanistic insights into the LIPG modulation of mitochondrial metabolism in TNBC and a proof-of-concept that targeting LIPG is a promising new therapeutic strategy for the treatment of TNBC.


Clinical Significance and the Role of Guanylate-Binding Protein 5 in Oral Squamous Cell Carcinoma.

  • Pei-Feng Liu‎ et al.
  • Cancers‎
  • 2021‎

Guanylate binding protein 5 (GBP5) is the interferon (IFN)-inducible subfamily of guanosine triphosphatases (GTPases) and is involved in pathogen defense. However, the role played by GBP5 in cancer development, especially in oral squamous cell carcinoma (OSCC), is still unknown. Herein, next-generation sequencing analysis showed that the gene expression levels of GBP5 were significantly higher in OSCC tissues compared with those found in corresponding tumor adjacent normal tissues (CTAN) from two pairs of OSCC patients. Higher gene expression levels of GBP5 were also found in tumor tissues of 23 buccal mucosal squamous cell carcinoma (BMSCC)/14 tongue squamous cell carcinoma (TSCC) patients and 30 oral cancer patients from The Cancer Genome Atlas (TCGA) database compared with those in CTAN tissues. Immunohistochemical results showed that protein expression levels of GBP5 were also higher in the tumor tissues of 353 OSCC patients including 117 BMSCC, 187 TSCC, and 49 lip squamous cell carcinoma patients. Moreover, TCGA database analysis indicated that high gene expression levels of GBP5 were associated with poor overall survival in oral cancer patients with moderate/poor cell differentiation, and associated with poor disease-free survival in oral cancer patients with moderate/poor cell differentiation and lymph node metastasis. Furthermore, GBP5-knockdowned cells exhibited decreased cell growth, arrest at G1 phase, and decreased invasion/migration. The gene expression of markers for epithelial-mesenchymal transition and cancer stemness was also reduced in GBP5-silenced oral cancer cells. Taken together, GBP5 might be a potential biomarker and therapeutic target for OSCC patients, especially for those with poor cell differentiation and lymph node metastasis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: