Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Vasoconstriction is determined by interstitial rather than circulating angiotensin II.

  • Martin P Schuijt‎ et al.
  • British journal of pharmacology‎
  • 2002‎

1. We investigated why angiotensin (Ang) I and II induce vasoconstriction with similar potencies, although Ang I-II conversion is limited. 2. Construction of concentration-response curves to Ang I and II in porcine femoral arteries, in the absence or presence of the AT(1) or AT(2) receptor antagonists irbesartan and PD123319, revealed that the approximately 2 fold difference in potency between Ang I and II was not due to stimulation of different AT receptor populations by exogenous and locally generated Ang II. 3. Measurement of Ang I and II and their metabolites at the time of vasoconstriction confirmed that, at equimolar application of Ang I and II, bath fluid Ang II during Ang I was approximately 18 times lower than during Ang II and that Ang II was by far the most important metabolite of Ang I. Tissue Ang II was 2.9+/-1.5% and 12.2+/-2.4% of the corresponding Ang I and II bath fluid levels, and was not affected by irbesartan or PD123319, suggesting that it was located extracellularly. 4. Since approximately 15% of tissue weight consists of interstitial fluid, it can be calculated that interstitial Ang II levels during Ang II resemble bath fluid Ang II levels, whereas during Ang I they are 8.8 - 27 fold higher. Consequently at equimolar application of Ang I and II, the interstitial Ang II levels differ only 2 - 4 fold. 5. Interstitial, rather than circulating Ang II determines vasoconstriction. Arterial Ang I, resulting in high interstitial Ang II levels via its local conversion by ACE, may be of greater physiological importance than arterial Ang II.


Sex differences in pulmonary vascular control: focus on the nitric oxide pathway.

  • Daphne P M de Wijs-Meijler‎ et al.
  • Physiological reports‎
  • 2017‎

Although the incidence of pulmonary hypertension is higher in females, the severity and prognosis of pulmonary vascular disease in both neonates and adults have been shown to be worse in male subjects. Studies of sex differences in pulmonary hypertension have mainly focused on the role of sex hormones. However, the contribution of sex differences in terms of vascular signaling pathways regulating pulmonary vascular function remains incompletely understood. Consequently, we investigated pulmonary vascular function of male and female swine in vivo, both at rest and during exercise, and in isolated small pulmonary arteries in vitro, with a particular focus on the NO-cGMP-PDE5 pathway. Pulmonary hemodynamics at rest and during exercise were virtually identical in male and female swine. Moreover, NO synthase inhibition resulted in a similar degree of pulmonary vasoconstriction in male and female swine. However, NO synthase inhibition blunted bradykinin-induced vasodilation in pulmonary small arteries to a greater extent in male than in female swine. PDE5 inhibition resulted in a similar degree of vasodilation in male and female swine at rest, while during exercise there was a trend towards a larger effect in male swine. In small pulmonary arteries, PDE5 inhibition failed to augment bradykinin-induced vasodilation in either sex. Finally, in the presence of NO synthase inhibition, the pulmonary vasodilator effect of PDE5 inhibition was significantly larger in female swine both in vivo and in vitro. In conclusion, the present study demonstrated significant sex differences in the regulation of pulmonary vascular tone, which may contribute to understanding sex differences in incidence, treatment response, and prognosis of pulmonary vascular disease.


Intervening with the Nitric Oxide Pathway to Alleviate Pulmonary Hypertension in Pulmonary Vein Stenosis.

  • Richard W B van Duin‎ et al.
  • Journal of clinical medicine‎
  • 2019‎

Pulmonary hypertension (PH) as a result of pulmonary vein stenosis (PVS) is extremely difficult to treat. The ideal therapy should not target the high-pressure/low-flow (HP/LF) vasculature that drains into stenotic veins, but only the high-pressure/high-flow (HP/HF) vasculature draining into unaffected pulmonary veins, reducing vascular resistance and pressure without risk of pulmonary oedema. We aimed to assess the activity of the nitric oxide (NO) pathway in PVS during the development of PH, and investigate whether interventions in the NO pathway differentially affect vasodilation in the HP/HF vs. HP/LF territories. Swine underwent pulmonary vein banding (PVB; n = 7) or sham surgery (n = 6) and were chronically instrumented to assess progression of PH. Pulmonary sensitivity to exogenous NO (sodium nitroprusside, SNP) and the contribution of endogenous NO were assessed bi-weekly. The pulmonary vasodilator response to phosphodiesterase-5 (PDE5) inhibition was assessed 12 weeks after PVB or sham surgery. After sacrifice, 12 weeks post-surgery, interventions in the NO pathway on pulmonary small arteries isolated from HP/LF and HP/HF territories were further investigated. There were no differences in the in vivo pulmonary vasodilator response to SNP and the pulmonary vasoconstrictor response to endothelial nitric oxide synthase (eNOS) inhibition up to 8 weeks after PVB as compared to the sham group. However, at 10 and 12 weeks post-PVB, the in vivo pulmonary vasodilation in response to SNP was larger in the PVB group. Similarly, the vasoconstriction to eNOS inhibition was larger in the PVB group, particularly during exercise, while pulmonary vasodilation in response to PDE5 inhibition was larger in the PVB group both at rest and during exercise. In isolated pulmonary small arteries, sensitivity to NO donor SNP was similar in PVB vs. sham groups irrespective of HP/LF and HP/HF, while sensitivity to the PDE5 inhibitor sildenafil was lower in PVB HP/HF and sensitivity to bradykinin was lower in PVB HP/LF. In conclusion, both NO availability and sensitivity were increased in the PVB group. The increased nitric oxide sensitivity was not the result of a decreased PDE5 activity, as PDE5 activity was even increased. Some vasodilators differentially effect HP/HF vs. HP/LF vasculature.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: