2024MAY02: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Suggested guidelines for the diagnosis and management of urea cycle disorders.

  • Johannes Häberle‎ et al.
  • Orphanet journal of rare diseases‎
  • 2012‎

Urea cycle disorders (UCDs) are inborn errors of ammonia detoxification/arginine synthesis due to defects affecting the catalysts of the Krebs-Henseleit cycle (five core enzymes, one activating enzyme and one mitochondrial ornithine/citrulline antiporter) with an estimated incidence of 1:8.000. Patients present with hyperammonemia either shortly after birth (~50%) or, later at any age, leading to death or to severe neurological handicap in many survivors. Despite the existence of effective therapy with alternative pathway therapy and liver transplantation, outcomes remain poor. This may be related to underrecognition and delayed diagnosis due to the nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity. These guidelines aim at providing a trans-European consensus to: guide practitioners, set standards of care and help awareness campaigns. To achieve these goals, the guidelines were developed using a Delphi methodology, by having professionals on UCDs across seven European countries to gather all the existing evidence, score it according to the SIGN evidence level system and draw a series of statements supported by an associated level of evidence. The guidelines were revised by external specialist consultants, unrelated authorities in the field of UCDs and practicing pediatricians in training. Although the evidence degree did hardly ever exceed level C (evidence from non-analytical studies like case reports and series), it was sufficient to guide practice on both acute and chronic presentations, address diagnosis, management, monitoring, outcomes, and psychosocial and ethical issues. Also, it identified knowledge voids that must be filled by future research. We believe these guidelines will help to: harmonise practice, set common standards and spread good practices with a positive impact on the outcomes of UCD patients.


Urea cycle disorders in Argentine patients: clinical presentation, biochemical and genetic findings.

  • Silene M Silvera-Ruiz‎ et al.
  • Orphanet journal of rare diseases‎
  • 2019‎

The incidence, prevalence, and molecular epidemiology of urea cycle disorders (UCDs) in Argentina remain underexplored. The present study is the first to thoroughly assess the clinical and molecular profiles of UCD patients examined at a single reference center in Argentina.


Urea cycle disorders in India: clinical course, biochemical and genetic investigations, and prenatal testing.

  • Sunita Bijarnia-Mahay‎ et al.
  • Orphanet journal of rare diseases‎
  • 2018‎

Urea cycle disorders (UCDs) are inherited metabolic disorders that present with hyperammonemia, and cause significant mortality and morbidity in infants and children. These disorders are not well reported in the Indian population, due to lack of a thorough study of the clinical and molecular profile.


Correction of a urea cycle defect after ex vivo gene editing of human hepatocytes.

  • Mihaela Zabulica‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2021‎

Ornithine transcarbamylase deficiency (OTCD) is a monogenic disease of ammonia metabolism in hepatocytes. Severe disease is frequently treated by orthotopic liver transplantation. An attractive approach is the correction of a patient's own cells to regenerate the liver with gene-repaired hepatocytes. This study investigates the efficacy and safety of ex vivo correction of primary human hepatocytes. Hepatocytes isolated from an OTCD patient were genetically corrected ex vivo, through the deletion of a mutant intronic splicing site achieving editing efficiencies >60% and the restoration of the urea cycle in vitro. The corrected hepatocytes were transplanted into the liver of FRGN mice and repopulated to high levels (>80%). Animals transplanted and liver repopulated with genetically edited patient hepatocytes displayed normal ammonia, enhanced clearance of an ammonia challenge and OTC enzyme activity, as well as lower urinary orotic acid when compared to mice repopulated with unedited patient hepatocytes. Gene expression was shown to be similar between mice transplanted with unedited or edited patient hepatocytes. Finally, a genome-wide screening by performing CIRCLE-seq and deep sequencing of >70 potential off-targets revealed no unspecific editing. Overall analysis of disease phenotype, gene expression, and possible off-target editing indicated that the gene editing of a severe genetic liver disease was safe and effective.


Split AAV-Mediated Gene Therapy Restores Ureagenesis in a Murine Model of Carbamoyl Phosphate Synthetase 1 Deficiency.

  • Matthew Nitzahn‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2020‎

The urea cycle enzyme carbamoyl phosphate synthetase 1 (CPS1) catalyzes the initial step of the urea cycle; bi-allelic mutations typically present with hyperammonemia, vomiting, ataxia, lethargy progressing into coma, and death due to brain edema if ineffectively treated. The enzyme deficiency is particularly difficult to treat; early recognition is essential to minimize injury to the brain. Even under optimal conditions, therapeutic interventions are of limited scope and efficacy, with most patients developing long-term neurologic sequelae. One significant encumberment to gene therapeutic development is the size of the CPS1 cDNA, which, at 4.5 kb, nears the packaging capacity of adeno-associated virus (AAV). Herein we developed a split AAV (sAAV)-based approach, packaging the large transgene and its regulatory cassette into two separate vectors, thereby delivering therapeutic CPS1 by a dual vector system with testing in a murine model of the disorder. Cps1-deficient mice treated with sAAVs survive long-term with markedly improved ammonia levels, diminished dysregulation of circulating amino acids, and increased hepatic CPS1 expression and activity. In response to acute ammonia challenging, sAAV-treated female mice rapidly incorporated nitrogen into urea. This study demonstrates the first proof-of-principle that sAAV-mediated therapy is a viable, potentially clinically translatable approach to CPS1 deficiency, a devastating urea cycle disorder.


N-Acetylglutamate Synthase Deficiency Due to a Recurrent Sequence Variant in the N-acetylglutamate Synthase Enhancer Region.

  • Monique Williams‎ et al.
  • Scientific reports‎
  • 2018‎

N-acetylglutamate synthase deficiency (NAGSD, MIM #237310) is an autosomal recessive disorder of the urea cycle that results from absent or decreased production of N-acetylglutamate (NAG) due to either decreased NAGS gene expression or defective NAGS enzyme. NAG is essential for the activity of carbamylphosphate synthetase 1 (CPS1), the first and rate-limiting enzyme of the urea cycle. NAGSD is the only urea cycle disorder that can be treated with a single drug, N-carbamylglutamate (NCG), which can activate CPS1 and completely restore ureagenesis in patients with NAGSD. We describe a novel sequence variant NM_153006.2:c.-3026C > T in the NAGS enhancer that was found in three patients from two families with NAGSD; two patients had hyperammonemia that resolved upon treatment with NCG, while the third patient increased dietary protein intake after initiation of NCG therapy. Two patients were homozygous for the variant while the third patient had the c.-3026C > T variant and a partial uniparental disomy that encompassed the NAGS gene on chromosome 17. The c.-3026C > T sequence variant affects a base pair that is highly conserved in vertebrates; the variant is predicted to be deleterious by several bioinformatics tools. Functional assays in cultured HepG2 cells demonstrated that the c.-3026C > T substitution could result in reduced expression of the NAGS gene. These findings underscore the importance of analyzing NAGS gene regulatory regions when looking for molecular causes of NAGSD.


Gene Therapy in Combination with Nitrogen Scavenger Pretreatment Corrects Biochemical and Behavioral Abnormalities of Infant Citrullinemia Type 1 Mice.

  • Andrea Bazo‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Citrullinemia type I (CTLN1) is a rare autosomal recessive disorder caused by mutations in the gene encoding argininosuccinate synthetase 1 (ASS1) that catalyzes the third step of the urea cycle. CTLN1 patients suffer from impaired elimination of nitrogen, which leads to neurotoxic levels of circulating ammonia and urea cycle byproducts that may cause severe metabolic encephalopathy, death or irreversible brain damage. Standard of care (SOC) of CTLN1 consists of daily nitrogen-scavenger administration, but patients remain at risk of life-threatening decompensations. We evaluated the therapeutic efficacy of a recombinant adeno-associated viral vector carrying the ASS1 gene under the control of a liver-specific promoter (VTX-804). When administered to three-week-old CTLN1 mice, all the animals receiving VTX-804 in combination with SOC gained body weight normally, presented with a normalization of ammonia and reduction of citrulline levels in circulation, and 100% survived for 7 months. Similar to what has been observed in CTLN1 patients, CTLN1 mice showed several behavioral abnormalities such as anxiety, reduced welfare and impairment of innate behavior. Importantly, all clinical alterations were notably improved after treatment with VTX-804. This study demonstrates the potential of VTX-804 gene therapy for future clinical translation to CTLN1 patients.


Transient fulminant liver failure as an initial presentation in citrullinemia type I.

  • Hannaneh Faghfoury‎ et al.
  • Molecular genetics and metabolism‎
  • 2011‎

Citrullinemia type I (CTLN1) is a urea cycle disorder which typically presents in the neonatal period or infancy with hyperammonemia and concurrent neurologic deterioration. We report a 15-month-old female with CTLN1 who presented with encephalopathy and seizures with hyperammonemia requiring emergency treatment. Although there was a rapid resolution of her hyperammonemia, she developed fulminant liver failure. The severe increase of transaminases (aspartate aminotransferase and alanine aminotransferase levels peaking at 19,794 UI/L and 19,938 UI/L, respectively) and concurrent disturbances in her hepatic synthetic functions led to the consideration of a liver transplantation. However, there was a normalization of her liver function tests over the course of weeks with supportive therapy alone. Molecular analysis of the ASS1 gene confirmed the diagnosis of CTLN1 by revealing the known mutation c.1087C>T (p.R363W) on the paternal allele and an intronic nucleotide exchange leading to an insertion of 69 bp on the transcript resulting in a frameshift and premature stop of translation on the maternal allele. We also briefly report another case of CTLN1 where liver failure was a prominent feature of the presentation. Fulminant liver failure has been described with a variety of other urea cycle disorders, but has been described in infantile onset presentation of CTLN1 in only two other cases recently. Our observation suggests that in some cases of CTLN1 with acute liver failure, emergency intervention such as transplantation is not warranted despite evidence of severe hepatotoxicity.


The first knock-in rat model for glutaric aciduria type I allows further insights into pathophysiology in brain and periphery.

  • Mary Gonzalez Melo‎ et al.
  • Molecular genetics and metabolism‎
  • 2021‎

Glutaric aciduria type I (GA-I, OMIM # 231670) is an inborn error of metabolism caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH). Patients develop acute encephalopathic crises (AEC) with striatal injury most often triggered by catabolic stress. The pathophysiology of GA-I, particularly in brain, is still not fully understood. We generated the first knock-in rat model for GA-I by introduction of the mutation p.R411W, the rat sequence homologue of the most common Caucasian mutation p.R402W, into the Gcdh gene of Sprague Dawley rats by CRISPR/CAS9 technology. Homozygous Gcdhki/ki rats revealed a high excretor phenotype, but did not present any signs of AEC under normal diet (ND). Exposure to a high lysine diet (HLD, 4.7%) after weaning resulted in clinical and biochemical signs of AEC. A significant increase of plasmatic ammonium concentrations was found in Gcdhki/ki rats under HLD, accompanied by a decrease of urea concentrations and a concomitant increase of arginine excretion. This might indicate an inhibition of the urea cycle. Gcdhki/ki rats exposed to HLD showed highly diminished food intake resulting in severely decreased weight gain and moderate reduction of body mass index (BMI). This constellation suggests a loss of appetite. Under HLD, pipecolic acid increased significantly in cerebral and extra-cerebral liquids and tissues of Gcdhki/ki rats, but not in WT rats. It seems that Gcdhki/ki rats under HLD activate the pipecolate pathway for lysine degradation. Gcdhki/ki rat brains revealed depletion of free carnitine, microglial activation, astroglyosis, astrocytic death by apoptosis, increased vacuole numbers, impaired OXPHOS activities and neuronal damage. Under HLD, Gcdhki/ki rats showed imbalance of intra- and extracellular creatine concentrations and indirect signs of an intracerebral ammonium accumulation. We successfully created the first rat model for GA-I. Characterization of this Gcdhki/ki strain confirmed that it is a suitable model not only for the study of pathophysiological processes, but also for the development of new therapeutic interventions. We further brought up interesting new insights into the pathophysiology of GA-I in brain and periphery.


Improvement of diagnostic yield in carbamoylphosphate synthetase 1 (CPS1) molecular genetic investigation by RNA sequencing.

  • Jasmine Isler‎ et al.
  • JIMD reports‎
  • 2020‎

Carbamoylphosphate synthetase 1 (CPS1) deficiency is a rare inborn error of metabolism leading often to neonatal onset hyperammonemia with coma and high mortality. The biochemical features of the disease are nonspecific and cannot distinguish this condition from other defects of the urea cycle, namely N-acetylglutamate synthase deficiency. Therefore, molecular genetic investigation is required for confirmation of the disease, and nowadays this is done with increasing frequency applying next-generation sequencing (NGS) techniques. Our laboratory has a long-standing interest in CPS1 molecular genetic investigation and receives samples from centers in Europe and many other countries. We perform RNA-based CPS1 molecular genetic investigation as first line investigation and wanted in this study to evaluate our experience with this approach as compared to NGS. In the past 15 years, 297 samples were analyzed, which were referred from 37 countries. CPS1 deficiency could be confirmed in 155 patients carrying 136 different genotypes with only a single mutation recurring more than two times. About 10% of the total 172 variants comprised complex changes (eg, intronic changes possibly affecting splicing, deletions, insertions, or deletions_insertions), which would have been partly missed if only NGS was done. Likewise, RNA analysis was crucial for correct interpretation of at least half of the complex mutations. This study gives highest sensitivity to RNA-based CPS1 molecular genetic investigation and underlines that NGS should be done together with copy number variation analysis. We propose that unclear cases should be investigated by RNA sequencing in addition, if this method is not used as the initial diagnostic procedure.


Impact of the SARS-CoV-2 pandemic on the health of individuals with intoxication-type metabolic diseases-Data from the E-IMD consortium.

  • Ulrike Mütze‎ et al.
  • Journal of inherited metabolic disease‎
  • 2023‎

The SARS-CoV-2 pandemic challenges healthcare systems worldwide. Within inherited metabolic disorders (IMDs) the vulnerable subgroup of intoxication-type IMDs such as organic acidurias (OA) and urea cycle disorders (UCD) show risk for infection-induced morbidity and mortality. This study (observation period February 2020 to December 2021) evaluates impact on medical health care as well as disease course and outcome of SARS-CoV-2 infections in patients with intoxication-type IMDs managed by participants of the European Registry and Network for intoxication type metabolic diseases Consortium (E-IMD). Survey's respondents managing 792 patients (n = 479 pediatric; n = 313 adult) with intoxication-type IMDs (n = 454 OA; n = 338 UCD) in 14 countries reported on 59 (OA: n = 36; UCD: n = 23), SARS-CoV-2 infections (7.4%). Medical services were increasingly requested (95%), mostly alleviated by remote technologies (86%). Problems with medical supply were scarce (5%). Regular follow-up visits were reduced in 41% (range 10%-50%). Most infected individuals (49/59; 83%) showed mild clinical symptoms, while 10 patients (17%; n = 6 OA including four transplanted MMA patients; n = 4 UCD) were hospitalized (metabolic decompensation in 30%). ICU treatment was not reported. Hospitalization rate did not differ for diagnosis or age group (p = 0.778). Survival rate was 100%. Full recovery was reported for 100% in outpatient care and 90% of hospitalized individuals. SARS-CoV-2 impacts health care of individuals with intoxication-type IMDs worldwide. Most infected individuals, however, showed mild symptoms and did not require hospitalization. SARS-CoV-2-induced metabolic decompensations were usually mild without increased risk for ICU treatment. Overall prognosis of infected individuals is very promising and IMD-specific or COVID-19-related complications have not been observed.


Functional characterization of the spf/ash splicing variation in OTC deficiency of mice and man.

  • Ana Rivera-Barahona‎ et al.
  • PloS one‎
  • 2015‎

The spf/ash mouse model of ornithine transcarbamylase (OTC) deficiency, a severe urea cycle disorder, is caused by a mutation (c.386G>A; p.R129H) in the last nucleotide of exon 4 of the Otc gene, affecting the 5' splice site and resulting in partial use of a cryptic splice site 48 bp into the adjacent intron. The equivalent nucleotide change and predicted amino acid change is found in OTC deficient patients. Here we have used liver tissue and minigene assays to dissect the transcriptional profile resulting from the "spf/ash" mutation in mice and man. For the mutant mouse, we confirmed liver transcripts corresponding to partial intron 4 retention by the use of the c.386+48 cryptic site and to normally spliced transcripts, with exon 4 always containing the c.386G>A (p.R129H) variant. In contrast, the OTC patient exhibited exon 4 skipping or c.386G>A (p.R129H)-variant exon 4 retention by using the natural or a cryptic splice site at nucleotide position c.386+4. The corresponding OTC tissue enzyme activities were between 3-6% of normal control in mouse and human liver. The use of the cryptic splice sites was reproduced in minigenes carrying murine or human mutant sequences. Some normally spliced transcripts could be detected in minigenes in both cases. Antisense oligonucleotides designed to block the murine cryptic +48 site were used in minigenes in an attempt to redirect splicing to the natural site. The results highlight the relevance of in depth investigations of the molecular mechanisms of splicing mutations and potential therapeutic approaches. Notably, they emphasize the fact that findings in animal models may not be applicable for human patients due to the different genomic context of the mutations.


Understanding carbamoyl phosphate synthetase (CPS1) deficiency by using the recombinantly purified human enzyme: effects of CPS1 mutations that concentrate in a central domain of unknown function.

  • Carmen Díez-Fernández‎ et al.
  • Molecular genetics and metabolism‎
  • 2014‎

Carbamoyl phosphate synthetase 1 deficiency (CPS1D) is an inborn error of the urea cycle that is due to mutations in the CPS1 gene. In the first large repertory of mutations found in CPS1D, a small CPS1 domain of unknown function (called the UFSD) was found to host missense changes with high frequency, despite the fact that this domain does not host substrate-binding or catalytic machinery. We investigate here by in vitro expression studies using baculovirus/insect cells the reasons for the prominence of the UFSD in CPS1D, as well as the disease-causing roles and pathogenic mechanisms of the mutations affecting this domain. All but three of the 18 missense changes found thus far mapping in this domain in CPS1D patients drastically decreased the yield of pure CPS1, mainly because of decreased enzyme solubility, strongly suggesting misfolding as a major determinant of the mutations negative effects. In addition, the majority of the mutations also decreased from modestly to very drastically the specific activity of the fraction of the enzyme that remained soluble and that could be purified, apparently because they decreased V(max). Substantial although not dramatic increases in K(m) values for the substrates or for N-acetyl-L-glutamate were observed for only five mutations. Similarly, important thermal stability decreases were observed for three mutations. The results indicate a disease-causing role for all the mutations, due in most cases to the combined effects of the low enzyme level and the decreased activity. Our data strongly support the value of the present expression system for ascertaining the disease-causing potential of CPS1 mutations, provided that the CPS1 yield is monitored. The observed effects of the mutations have been rationalized on the basis of an existing structural model of CPS1. This model shows that the UFSD, which is in the middle of the 1462-residue multidomain CPS1 protein, plays a key integrating role for creating the CPS1 multidomain architecture leading us to propose here a denomination of "Integrating Domain" for this CPS1 region. The majority of these 18 mutations distort the interaction of this domain with other CPS1 domains, in many cases by causing improper folding of structural elements of the Integrating Domain that play key roles in these interactions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: