Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Combinatorial Loss of the Enzymatic Activities of Viral Uracil-DNA Glycosylase and Viral dUTPase Impairs Murine Gammaherpesvirus Pathogenesis and Leads to Increased Recombination-Based Deletion in the Viral Genome.

  • Qiwen Dong‎ et al.
  • mBio‎
  • 2018‎

Misincorporation of uracil or spontaneous cytidine deamination is a common mutagenic insult to DNA. Herpesviruses encode a viral uracil-DNA glycosylase (vUNG) and a viral dUTPase (vDUT), each with enzymatic and nonenzymatic functions. However, the coordinated roles of these enzymatic activities in gammaherpesvirus pathogenesis and viral genomic stability have not been defined. In addition, potential compensation by the host UNG has not been examined in vivo The genetic tractability of the murine gammaherpesvirus 68 (MHV68) system enabled us to delineate the contribution of host and viral factors that prevent uracilated DNA. Recombinant MHV68 lacking vUNG (ORF46.stop) was not further impaired for acute replication in the lungs of UNG-/- mice compared to wild-type (WT) mice, indicating host UNG does not compensate for the absence of vUNG. Next, we investigated the separate and combinatorial consequences of mutating the catalytic residues of the vUNG (ORF46.CM) and vDUT (ORF54.CM). ORF46.CM was not impaired for replication, while ORF54.CM had a slight transient defect in replication in the lungs. However, disabling both vUNG and vDUT led to a significant defect in acute expansion in the lungs, followed by impaired establishment of latency in the splenic reservoir. Upon serial passage of the ORF46.CM/ORF54.CM mutant in either fibroblasts or the lungs of mice, we noted rapid loss of the nonessential yellow fluorescent protein (YFP) reporter gene from the viral genome, due to recombination at repetitive elements. Taken together, our data indicate that the vUNG and vDUT coordinate to promote viral genomic stability and enable viral expansion prior to colonization of latent reservoirs.IMPORTANCE Unrepaired uracils in DNA can lead to mutations and compromise genomic stability. Herpesviruses have hijacked host processes of DNA repair and nucleotide metabolism by encoding a viral UNG that excises uracils and a viral dUTPase that initiates conversion of dUTP to dTTP. To better understand the impact of these processes on gammaherpesvirus pathogenesis, we examined the separate and collaborative roles of vUNG and vDUT upon MHV68 infection of mice. Simultaneous disruption of the enzymatic activities of both vUNG and vDUT led to a severe defect in acute replication and establishment of latency, while also revealing a novel, combinatorial function in promoting viral genomic stability. We propose that herpesviruses require these enzymatic processes to protect the viral genome from damage, possibly triggered by misincorporated uracil. This reveals a novel point of therapeutic intervention to potentially block viral replication and reduce the fitness of multiple herpesviruses.


Transcriptional and translational dynamics underlying heat shock response in the thermophilic crenarchaeon Sulfolobus acidocaldarius.

  • Rani Baes‎ et al.
  • mBio‎
  • 2023‎

Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius, which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism's lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response.


tRNAs Are Stable After All: Pitfalls in Quantification of tRNA from Starved Escherichia coli Cultures Exposed by Validation of RNA Purification Methods.

  • Thomas Prossliner‎ et al.
  • mBio‎
  • 2023‎

tRNAs and ribosomal RNAs are often considered stable RNAs. In contrast to this view, we recently proposed that tRNAs are degraded during amino acid starvation and drug-induced transcription inhibition. However, reevaluation of our experimental approach revealed that common RNA extraction methods suffer from alarming extraction and size biases that can lead to gross underestimation of RNA levels in starved Escherichia coli populations. Quantification of tRNAs suffers additional biases due to differing fractions of tRNAs with base modifications in growing versus starved bacteria. Applying an improved methodology, we measured tRNA levels after starvation for amino acids, glucose, phosphate, or ammonium and transcription inhibition by rifampicin. We report that tRNA levels remain largely unaffected in all tested conditions, including several days of starvation. This confirms that tRNAs are remarkably stable RNAs and serves as a cautionary tale about quantification of RNA from cells cultured outside the steady-state growth regime. rRNA, conversely, is extensively degraded during starvation. Thus, E. coli downregulates the translation machinery in response to starvation by reducing the ribosome pool through rRNA degradation, while a high concentration of tRNAs available to supply amino acids to the remaining ribosomes is maintained. IMPORTANCE We show that E. coli tRNAs are remarkably stable during several days of nutrient starvation, although rRNA is degraded extensively under these conditions. The levels of these two major RNA classes are considered to be strongly coregulated at the level of transcription. We demonstrate that E. coli can control the ratio of tRNAs per ribosome under starvation by means of differential degradation rates. The question of tRNA stability in stressed E. coli cells has become subject to debate. Our in-depth analysis of RNA quantification methods reveals hidden technical pitfalls at every step of the analysis, from RNA extraction to target detection and normalization. Most importantly, starved E. coli populations were more resilient to RNA extraction than unstarved populations. The current results underscore that the seemingly trivial task of quantifying an abundant RNA species is not straightforward for cells cultured outside the exponential growth regime.


Expression and Immunostaining Analyses Suggest that Pneumocystis Primary Homothallism Involves Trophic Cells Displaying Both Plus and Minus Pheromone Receptors.

  • A Luraschi‎ et al.
  • mBio‎
  • 2019‎

The genus Pneumocystis encompasses fungal species that colonize mammals' lungs with host specificity. Should the host immune system weaken, the fungal species can cause severe pneumonia. The life cycle of these pathogens is poorly known, mainly because an in vitro culture method has not been established. Both asexual and sexual cycles would occur. Trophic cells, the predominant forms during infection, could multiply asexually but also enter into a sexual cycle. Comparative genomics revealed a single mating type locus, including plus and minus genes, suggesting that primary homothallism involving self-fertility of each strain is the mode of reproduction of Pneumocystis species. We identified and analyzed the expression of the mam2 and map3 genes encoding the receptors for plus and minus pheromones using reverse transcriptase PCR, in both infected mice and bronchoalveolar lavage fluid samples from patients with Pneumocystis pneumonia. Both receptors were most often concomitantly expressed during infection, revealing that both pheromone-receptor systems are involved in the sexual cycle. The map3 transcripts were subject to alternative splicing. Using immunostaining, we investigated the presence of the pheromone receptors at the surfaces of Pneumocystis cells from a patient. The staining tools were first assessed in Saccharomyces cerevisiae displaying the Pneumocystis receptors at their cellular surface. Both receptors were present at the surfaces of the vast majority of the cells that were likely trophic forms. The receptors might have a role in mate recognition and/or postfertilization events. Their presence at the cell surface might facilitate outbreeding versus inbreeding of self-fertile strains.IMPORTANCE The fungi belonging to the genus Pneumocystis may cause severe pneumonia in immunocompromised humans, a disease that can be fatal if not treated. This disease is nowadays one of the most frequent invasive fungal infections worldwide. Whole-genome sequencing revealed that the sexuality of these fungi involves a single partner that can self-fertilize. Here, we report that two receptors recognizing specifically excreted pheromones are involved in this self-fertility within infected human lungs. Using fluorescent antibodies binding specifically to these receptors, we observed that most often, the fungal cells display both receptors at their surface. These pheromone-receptor systems might play a role in mate recognition and/or postfertilization events. They constitute an integral part of the Pneumocystis obligate sexuality within human lungs, a cycle that is necessary for the dissemination of the fungus to new individuals.


A critical role for the putative NCS2 nucleobase permease YjcD in the sensitivity of Escherichia coli to cytotoxic and mutagenic purine analogs.

  • Stanislav G Kozmin‎ et al.
  • mBio‎
  • 2013‎

The base analogs 6-N-hydroxylaminopurine (HAP) and 2-amino-HAP (AHAP) are potent mutagens in bacteria and eukaryotic organisms. Previously, we demonstrated that a defect in the Escherichia coli ycbX gene, encoding a molybdenum cofactor-dependent oxidoreductase, dramatically enhances sensitivity to the toxic and mutagenic action of these agents. In the present study, we describe the discovery and properties of a novel suppressor locus, yjcD, that strongly reduces the HAP sensitivity of the ycbX strain. Suppressor effects are also observed for other purine analogs, like AHAP, 6-mercaptopurine, 6-thioguanine, and 2-aminopurine. In contrast, the yjcD defect did not affect the sensitivity to the pyrimidine analog 5-fluorouracil. Homology searches have predicted that yjcD encodes a putative permease of the NCS2 family of nucleobase transporters. We further investigated the effects of inactivation of all other members of the NCS2 family, XanQ, XanP, PurP, UacT, UraA, RutG, YgfQ, YicO, and YbbY, and of the NCS1 family nucleobase permeases CodB and YbbW. None of these other defects significantly affected sensitivity to either HAP or AHAP. The combined data strongly suggest that YjcD is the primary importer for modified purine bases. We also present data showing that this protein may, in fact, also be a principal permease involved in transport of the normal purines guanine, hypoxanthine, and/or xanthine.


Small-Molecule Mn Antioxidants in Caenorhabditis elegans and Deinococcus radiodurans Supplant MnSOD Enzymes during Aging and Irradiation.

  • Elena K Gaidamakova‎ et al.
  • mBio‎
  • 2022‎

Denham Harman's oxidative damage theory identifies superoxide (O2•-) radicals as central agents of aging and radiation injury, with Mn2+-dependent superoxide dismutase (MnSOD) as the principal O2•--scavenger. However, in the radiation-resistant nematode Caenorhabditis elegans, the mitochondrial antioxidant enzyme MnSOD is dispensable for longevity, and in the model bacterium Deinococcus radiodurans, it is dispensable for radiation resistance. Many radiation-resistant organisms accumulate small-molecule Mn2+-antioxidant complexes well-known for their catalytic ability to scavenge O2•-, along with MnSOD, as exemplified by D. radiodurans. Here, we report experiments that relate the MnSOD and Mn-antioxidant content to aging and oxidative stress resistances and which indicate that C. elegans, like D. radiodurans, may rely on Mn-antioxidant complexes as the primary defense against reactive oxygen species (ROS). Wild-type and ΔMnSOD D. radiodurans and C. elegans were monitored for gamma radiation sensitivities over their life spans while gauging Mn2+-antioxidant content by electron paramagnetic resonance (EPR) spectroscopy, a powerful new approach to determining the in vivo Mn-antioxidant content of cells as they age. As with D. radiodurans, MnSOD is dispensable for radiation survivability in C. elegans, which hyperaccumulates Mn-antioxidants exceptionally protective of proteins. Unexpectedly, ΔMnSOD mutants of both the nematodes and bacteria exhibited increased gamma radiation survival compared to the wild-type. In contrast, the loss of MnSOD renders radiation-resistant bacteria sensitive to atmospheric oxygen during desiccation. Our results support the concept that the disparate responses to oxidative stress are explained by the accumulation of Mn-antioxidant complexes which protect, complement, and can even supplant MnSOD. IMPORTANCE The current theory of cellular defense against oxidative damage identifies antioxidant enzymes as primary defenders against ROS, with MnSOD being the preeminent superoxide (O2•-) scavenger. However, MnSOD is shown to be dispensable both for radiation resistance and longevity in model organisms, the bacterium Deinococcus radiodurans and the nematode Caenorhabditis elegans. Measured by electron paramagnetic resonance (EPR) spectroscopy, small-molecule Mn-antioxidant content was shown to decline in unison with age-related decreases in cell proliferation and radioresistance, which again are independent of MnSOD presence. Most notably, the Mn-antioxidant content of C. elegans drops precipitously in the last third of its life span, which links with reports that the steady-state level of oxidized proteins increases exponentially during the last third of the life span in animals. This leads us to propose that global responses to oxidative stress must be understood through an extended theory that includes small-molecule Mn-antioxidants as potent O2•--scavengers that complement, and can even supplant, MnSOD.


Human papillomavirus E6 triggers upregulation of the antiviral and cancer genomic DNA deaminase APOBEC3B.

  • Valdimara C Vieira‎ et al.
  • mBio‎
  • 2014‎

Several recent studies have converged upon the innate immune DNA cytosine deaminase APOBEC3B (A3B) as a significant source of genomic uracil lesions and mutagenesis in multiple human cancers, including those of the breast, head/neck, cervix, bladder, lung, ovary, and other tissues. A3B is upregulated in these tumor types relative to normal tissues, but the mechanism is unclear. Because A3B also has antiviral activity in multiple systems and is a member of the broader innate immune response, we tested the hypothesis that human papillomavirus (HPV) infection causes A3B upregulation. We found that A3B mRNA expression and enzymatic activity were upregulated following transfection of a high-risk HPV genome and that this effect was abrogated by inactivation of E6. Transduction experiments showed that the E6 oncoprotein alone was sufficient to cause A3B upregulation, and a panel of high-risk E6 proteins triggered higher A3B levels than did a panel of low-risk or noncancer E6 proteins. Knockdown experiments in HPV-positive cell lines showed that endogenous E6 is required for A3B upregulation. Analyses of publicly available head/neck cancer data further support this relationship, as A3B levels are higher in HPV-positive cancers than in HPV-negative cancers. Taken together with the established role for high-risk E6 in functional inactivation of TP53 and published positive correlations in breast cancer between A3B upregulation and genetic inactivation of TP53, our studies suggest a model in which high-risk HPV E6, possibly through functional inactivation of TP53, causes derepression of A3B gene transcription. This would lead to a mutator phenotype that explains the observed cytosine mutation biases in HPV-positive head/neck and cervical cancers.


Kaposi's Sarcoma-Associated Herpesvirus-Encoded circRNAs Are Expressed in Infected Tumor Tissues and Are Incorporated into Virions.

  • Bizunesh Abere‎ et al.
  • mBio‎
  • 2020‎

Kaposi's sarcoma-associated herpesvirus (KSHV) has recently been found to generate circular RNAs (circRNAs) from several KSHV genes, most abundantly from K10 (viral interferon regulatory factor 4 [vIRF4]), K7.3, and polyadenylated nuclear (PAN) RNA. To define expression of these circRNAs, KSHV-infected cell lines, patient tissues, and purified virions were examined. KSHV circRNA expression was universally detected in tests of six primary effusion lymphoma (PEL) cell lines but ranged from low-level expression in BC-1 cells dually infected with tightly latent KSHV and Epstein-Barr virus to abundant expression in KSHV-only BCBL-1 cells with spontaneous virus production. Generally, the PAN/K7.3 locus broadly and bidirectionally generated circRNA levels that paralleled the corresponding linear RNA levels. However, RNA corresponding to a particular KSHV circularization site (circ-vIRF4) was minimally induced, despite linear vIRF4 RNA being activated by virus induction. In situ hybridization showed abundant circ-vIRF4 in noninduced PEL cells. All three KSHV circRNAs were isolated as nuclease-protected forms from gradient-purified virions collected from BrK.219 cells infected with a KSHV molecular clone. For circ-vIRF4, the fully processed form that is exported to the cytoplasm was incorporated into virus particles but the nuclear, intron-retaining form was not. The half-life of circ-vIRF4 was twice as long as that of its linear counterpart. The KSHV circRNAs could be detected at a higher rate than their corresponding linear counterparts by in situ hybridization in archival tissues and by reverse transcription-PCR (RT-PCR) in sera stored for over 25 years. In summary, KSHV circRNAs are expressed in infection-associated diseases, can be regulated depending on virus life cycle, and are incorporated into viral particles for preformed delivery, suggesting a potential function in early infection.IMPORTANCE KSHV has recently been found to encode circRNAs. circRNAs result from back-splicing of an upstream pre-mRNA splice donor exon-intron junction to an acceptor site, generating a covalently closed circle. This study revealed that for one KSHV region, the PAN/K7.3 locus, broadly and bidirectionally generated circRNA levels parallel corresponding linear RNA levels. Another KSHV circularization site (circ-vIRF4), however, showed expression that differed from that of the corresponding linear RNA. All KSHV circRNAs are incorporated into KSHV virions and are potentially expressed as immediate early products in newly infected cells.


The Shigella Spp. Type III Effector Protein OspB Is a Cysteine Protease.

  • Thomas E Wood‎ et al.
  • mBio‎
  • 2022‎

The type III secretion system is required for virulence of many pathogenic bacteria. Bacterial effector proteins delivered into target host cells by this system modulate host signaling pathways and processes in a manner that promotes infection. Here, we define the activity of the effector protein OspB of the human pathogen Shigella spp., the etiological agent of shigellosis and bacillary dysentery. Using the yeast Saccharomyces cerevisiae as a model organism, we show that OspB sensitizes cells to inhibition of TORC1, the central regulator of growth and metabolism. In silico analyses reveal that OspB bears structural homology to bacterial cysteine proteases that target mammalian cell processes, and we define a conserved cysteine-histidine catalytic dyad required for OspB function. Using yeast genetic screens, we identify a crucial role for the arginine N-degron pathway in the yeast growth inhibition phenotype and show that inositol hexakisphosphate is an OspB cofactor. We find that a yeast substrate for OspB is the TORC1 component Tco89p, proteolytic cleavage of which generates a C-terminal fragment that is targeted for degradation via the arginine N-degron pathway; processing and degradation of Tco89p is required for the OspB phenotype. In all, we demonstrate that the Shigella T3SS effector OspB is a cysteine protease and decipher its interplay with eukaryotic cell processes. IMPORTANCEShigella spp. are important human pathogens and among the leading causes of diarrheal mortality worldwide, especially in children. Virulence depends on the Shigella type III secretion system (T3SS). Definition of the roles of the bacterial effector proteins secreted by the T3SS is key to understanding Shigella pathogenesis. The effector protein OspB contributes to a range of phenotypes during infection, yet the mechanism of action is unknown. Here, we show that S. flexneri OspB possesses cysteine protease activity in both yeast and mammalian cells, and that enzymatic activity of OspB depends on a conserved cysteine-histidine catalytic dyad. We determine how its protease activity sensitizes cells to TORC1 inhibition in yeast, finding that OspB cleaves a component of yeast TORC1, and that the degradation of the C-terminal cleavage product is responsible for OspB-mediated hypersensitivity to TORC1 inhibitors. Thus, OspB is a cysteine protease that depends on a conserved cysteine-histidine catalytic dyad.


A Histoplasma capsulatum Lipid Metabolic Map Identifies Antifungal Targets.

  • Daniel Zamith-Miranda‎ et al.
  • mBio‎
  • 2021‎

Lipids play a fundamental role in fungal cell biology, being essential cell membrane components and major targets of antifungal drugs. A deeper knowledge of lipid metabolism is key for developing new drugs and a better understanding of fungal pathogenesis. Here, we built a comprehensive map of the Histoplasma capsulatum lipid metabolic pathway by incorporating proteomic and lipidomic analyses. We performed genetic complementation and overexpression of H. capsulatum genes in Saccharomyces cerevisiae to validate reactions identified in the map and to determine enzymes responsible for catalyzing orphan reactions. The map led to the identification of both the fatty acid desaturation and the sphingolipid biosynthesis pathways as targets for drug development. We found that the sphingolipid biosynthesis inhibitor myriocin, the fatty acid desaturase inhibitor thiocarlide, and the fatty acid analog 10-thiastearic acid inhibit H. capsulatum growth in nanomolar to low-micromolar concentrations. These compounds also reduced the intracellular infection in an alveolar macrophage cell line. Overall, this lipid metabolic map revealed pathways that can be targeted for drug development. IMPORTANCE It is estimated that 150 people die per hour due to the insufficient therapeutic treatments to combat fungal infections. A major hurdle to developing antifungal therapies is the scarce knowledge on the fungal metabolic pathways and mechanisms of virulence. In this context, fungal lipid metabolism is an excellent candidate for developing drugs due to its essential roles in cellular scaffolds, energy storage, and signaling transductors. Here, we provide a detailed map of Histoplasma capsulatum lipid metabolism. The map revealed points of this fungus lipid metabolism that can be targeted for developing antifungal drugs.


Role of the Escherichia coli ubiquinone-synthesizing UbiUVT pathway in adaptation to changing respiratory conditions.

  • Rodrigo Arias-Cartin‎ et al.
  • mBio‎
  • 2023‎

Isoprenoid quinones are essential for cellular physiology. They act as electron and proton shuttles in respiratory chains and various biological processes. Escherichia coli and many α-, β-, and γ-proteobacteria possess two types of isoprenoid quinones: ubiquinone (UQ) is mainly used under aerobiosis, while demethylmenaquinones (DMK) are mostly used under anaerobiosis. Yet, we recently established the existence of an anaerobic O2-independent UQ biosynthesis pathway controlled by ubiT, ubiU, and ubiV genes. Here, we characterize the regulation of ubiTUV genes in E. coli. We show that the three genes are transcribed as two divergent operons that are both under the control of the O2-sensing Fnr transcriptional regulator. Phenotypic analyses using a menA mutant devoid of DMK revealed that UbiUV-dependent UQ synthesis is essential for nitrate respiration and uracil biosynthesis under anaerobiosis, while it contributes, though modestly, to bacterial multiplication in the mouse gut. Moreover, we showed by genetic study and 18O2 labeling that UbiUV contributes to the hydroxylation of ubiquinone precursors through a unique O2-independent process. Last, we report the crucial role of ubiT in allowing E. coli to shift efficiently from anaerobic to aerobic conditions. Overall, this study uncovers a new facet of the strategy used by E. coli to adjust its metabolism on changing O2 levels and respiratory conditions. This work links respiratory mechanisms to phenotypic adaptation, a major driver in the capacity of E. coli to multiply in gut microbiota and of facultative anaerobic pathogens to multiply in their host. IMPORTANCE Enterobacteria multiplication in the gastrointestinal tract is linked to microaerobic respiration and associated with various inflammatory bowel diseases. Our study focuses on the biosynthesis of ubiquinone, a key player in respiratory chains, under anaerobiosis. The importance of this study stems from the fact that UQ usage was for long considered to be restricted to aerobic conditions. Here we investigated the molecular mechanism allowing UQ synthesis in the absence of O2 and searched for the anaerobic processes that UQ is fueling in such conditions. We found that UQ biosynthesis involves anaerobic hydroxylases, that is, enzymes able to insert an O atom in the absence of O2. We also found that anaerobically synthesized UQ can be used for respiration on nitrate and the synthesis of pyrimidine. Our findings are likely to be applicable to most facultative anaerobes, which count many pathogens (Salmonella, Shigella, and Vibrio) and will help in unraveling microbiota dynamics.


The Cyclin Cln1 Controls Polyploid Titan Cell Formation following a Stress-Induced G2 Arrest in Cryptococcus.

  • Sophie Altamirano‎ et al.
  • mBio‎
  • 2021‎

The pathogenic yeast Cryptococcus neoformans produces polyploid titan cells in response to the host lung environment that are critical for host adaptation and subsequent disease. We analyzed the in vivo and in vitro cell cycles to identify key aspects of the C. neoformans cell cycle that are important for the formation of titan cells. We identified unbudded 2C cells, referred to as a G2 arrest, produced both in vivo and in vitro in response to various stresses. Deletion of the nonessential cyclin Cln1 resulted in overproduction of titan cells in vivo and transient morphology defects upon release from stationary phase in vitro. Using a copper-repressible promoter PCTR4-CLN1 strain and a two-step in vitro titan cell formation assay, our in vitro studies revealed Cln1 functions after the G2 arrest. These studies highlight unique cell cycle alterations in C. neoformans that ultimately promote genomic diversity and virulence in this important fungal pathogen. IMPORTANCE Dysregulation of the cell cycle underlies many human genetic diseases and cancers, yet numerous organisms, including microbes, also manipulate the cell cycle to generate both morphologic and genetic diversity as a natural mechanism to enhance their chances for survival. The eukaryotic pathogen Cryptococcus neoformans generates morphologically distinct polyploid titan cells critical for host adaptation and subsequent disease. We analyzed the C. neoformans in vivo and in vitro cell cycles to identify changes required to generate the polyploid titan cells. C. neoformans paused cell cycle progression in response to various environmental stresses after DNA replication and before morphological changes associated with cell division, referred to as a G2 arrest. Release from this G2 arrest was coordinated by the cyclin Cln1. Reduced CLN1 expression after the G2 arrest was associated with polyploid titan cell production. These results demonstrate a mechanism to generate genomic diversity in eukaryotic cells through manipulation of the cell cycle that has broad disease implications.


The Ribbon-Helix-Helix Domain Protein CdrS Regulates the Tubulin Homolog ftsZ2 To Control Cell Division in Archaea.

  • Cynthia L Darnell‎ et al.
  • mBio‎
  • 2020‎

Precise control of the cell cycle is central to the physiology of all cells. In prior work we demonstrated that archaeal cells maintain a constant size; however, the regulatory mechanisms underlying the cell cycle remain unexplored in this domain of life. Here, we use genetics, functional genomics, and quantitative imaging to identify and characterize the novel CdrSL gene regulatory network in a model species of archaea. We demonstrate the central role of these ribbon-helix-helix family transcription factors in the regulation of cell division through specific transcriptional control of the gene encoding FtsZ2, a putative tubulin homolog. Using time-lapse fluorescence microscopy in live cells cultivated in microfluidics devices, we further demonstrate that FtsZ2 is required for cell division but not elongation. The cdrS-ftsZ2 locus is highly conserved throughout the archaeal domain, and the central function of CdrS in regulating cell division is conserved across hypersaline adapted archaea. We propose that the CdrSL-FtsZ2 transcriptional network coordinates cell division timing with cell growth in archaea.IMPORTANCE Healthy cell growth and division are critical for individual organism survival and species long-term viability. However, it remains unknown how cells of the domain Archaea maintain a healthy cell cycle. Understanding the archaeal cell cycle is of paramount evolutionary importance given that an archaeal cell was the host of the endosymbiotic event that gave rise to eukaryotes. Here, we identify and characterize novel molecular players needed for regulating cell division in archaea. These molecules dictate the timing of cell septation but are dispensable for growth between divisions. Timing is accomplished through transcriptional control of the cell division ring. Our results shed light on mechanisms underlying the archaeal cell cycle, which has thus far remained elusive.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: