Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Inhibition of uracil DNA glycosylase sensitizes cancer cells to 5-fluorodeoxyuridine through replication fork collapse-induced DNA damage.

  • Yan Yan‎ et al.
  • Oncotarget‎
  • 2016‎

5-fluorodeoxyuridine (5-FdU, floxuridine) is active against multiple cancers through the inhibition of thymidylate synthase, which consequently introduces uracil and 5-FU incorporation into the genome. Uracil DNA glycosylase (UDG) is one of the main enzymes responsible for the removal of uracil and 5-FU. However, how exactly UDG mediates cellular sensitivity to 5-FdU, and if so whether it is through its ability to remove uracil and 5-FU have not been well characterized. In this study, we report that UDG depletion led to incorporation of uracil and 5-FU in DNA following 5-FdU treatment and significantly enhanced 5-FdU's cytotoxicity in cancer cell lines. Co-treatment, but not post-treatment with thymidine prevented cell death of UDG depleted cells by 5-FdU, indicating that the enhanced cytotoxicity is due to the retention of uracil and 5-FU in genomic DNA in the absence of UDG. Furthermore, UDG depleted cells were arrested at late G1 and early S phase by 5-FdU, followed by accumulation of sub-G1 population indicating cell death. Mechanistically, 5-FdU dramatically reduced DNA replication speed in UDG depleted cells. UDG depletion also greatly enhanced DNA damage as shown by γH2AX foci formation. Notably, the increased γH2AX foci formation was not suppressed by caspase inhibitor treatment, suggesting that DNA damage precedes cell death induced by 5-FdU. Together, these data provide novel mechanistic insights into the roles of UDG in DNA replication, damage repair, and cell death in response to 5-FdU and suggest that UDG is a target for improving the anticancer effect of this agent.


Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil- DNA glycosylase.

  • Hongdo Do‎ et al.
  • Oncotarget‎
  • 2012‎

Non-reproducible sequence artefacts are frequently detected in DNA from formalinfixed and paraffin-embedded (FFPE) tissues. However, no rational strategy has been developed for reduction of sequence artefacts from FFPE DNA as the underlying causes of the artefacts are poorly understood. As cytosine deamination to uracil is a common form of DNA damage in ancient DNA, we set out to examine whether treatment of FFPE DNA with uracil-DNA glycosylase (UDG) would lead to the reduction of C>T (and G>A) sequence artefacts. Heteroduplex formation in high resolution melting (HRM)-based assays was used for the detection of sequence variants in FFPE DNA samples. A set of samples that gave false positive HRM results for screening for the E17K mutation in exon 4 of the AKT1 gene were chosen for analysis. Sequencing of these samples showed multiple non-reproducible C:G>T:A artefacts. Treatment of the FFPE DNA with UDG prior to PCR amplification led to a very marked reduction of the sequence artefacts as indicated by both HRM and sequencing analysis, indicating that uracil lesions are the major cause of sequence artefacts. Similar results were shown for the BRAF V600 region in the same sample set and EGFR exon 19 in another sample set. UDG treatment specifically suppressed the formation of artefacts in FFPE DNA as it did not affect the detection of true KRAS codon 12 and true EGFR exon 19 and 20 mutations. We conclude that uracil in FFPE DNA leads to a significant proportion of sequence artefacts. These can be minimised by a simple UDG pretreatment which can be readily carried out, in the same tube, as the PCR immediately prior to commencing thermal cycling. HRM is a convenient way of monitoring both the degree of damage and the effectiveness of the UDG treatment. These findings have immediate and important implications for cancer diagnostics where FFPE DNA is used as the primary genetic material for mutational studies guiding personalised medicine strategies and where simple effective strategies to detect mutations are required.


Maintenance treatment of Uracil and Tegafur (UFT) in responders following first-line fluorouracil-based chemotherapy in metastatic gastric cancer: a randomized phase II study.

  • Wenhua Li‎ et al.
  • Oncotarget‎
  • 2017‎

Maintenance therapy proves to be effective in advanced lung and breast cancer after initial chemotherapy. The purpose of this phase II study was to evaluate the efficacy and safety of Uracil and Tegafur (UFT) maintenance in metastatic gastric cancer patients following the first-line fluorouracil-based chemotherapy.


BRAFV600E -mutated ovarian serous borderline tumors are at relatively low risk for progression to serous carcinoma.

  • M Herman Chui‎ et al.
  • Oncotarget‎
  • 2019‎

Ovarian serous borderline tumor (SBT) is a known precursor of low-grade serous carcinoma. While most SBTs are cured surgically, some progress to carcinoma and a risk predictor for malignant relapse is needed to ensure vigilant follow-up and additional treatment. Activating mutations in KRAS or BRAF are present in around 60% of SBTs, but their relative impact on progression is unclear. We performed mutational analysis of KRAS and BRAF on 201 SBTs identified from a longitudinal cohort of SBTs after centralized pathology review. Compared to wildtype and KRAS-mutated SBTs, BRAF-mutated group of SBTs were less likely to exhibit micropapillary variant histology (p < 0.0001), were more frequently Stage I (p = 0.0023) and had a lower prevalence of associated endosalpingiosis (p = 0.0069). The histologic feature of diffuse presence of tumor cells with dense eosinophilic cytoplasm, while significantly associated with the BRAFV600E mutation (p < 0.0001), is 62% sensitive and 93% specific in identifying tumors with this mutation. After adjusting for age and stage, the risk of subsequent serous carcinoma was lower for SBTs harboring BRAF (HR 0.27, 95% CI 0.08-0.93), but not KRAS (HR 1.00, 95% CI 0.45-2.23) mutations, in comparison to wildtype SBTs. This study establishes the potential utility of mutation testing for guiding clinical management of ovarian SBT and underscores the importance of accurate morphologic distinction of micropapillary SBT from SBT with eosinophilic tumor cells, given their disparate prognostic implications.


p53 in the mitochondria, as a trans-acting protein, provides error-correction activities during the incorporation of non-canonical dUTP into DNA.

  • Elad Bonda‎ et al.
  • Oncotarget‎
  • 2016‎

Mutations in mitochondrial DNA is an outcome of errors produced by DNA polymerase γ during replication and failure of the repair mechanism. Misincorporation of non-canonical dUTP leads to mutagenesis or apoptosis, and may contribute to the cytotoxic effects of 5'-fluorouracil chemotherapy. Tumor suppressor p53 protein in the mitochondria displays physical and functional interactions with mitochondrial DNA and polymerase γ, and by its intrinsic 3'→5' exonuclease activity can diminish the polymerization errors. Here we demonstrate the impact of p53 on incorporation of uracil into DNA examined with mitochondrial fractions, as the source of polymerase γ. p53 in mitochondria facilitates DNA damage repair functions resulting from uracil-DNA misincorporation. Our biochemical studies revealed that the procession of U:A and mismatched U:G lesions enhances in the presence of recombinant or endogenous cytoplasmic p53. p53 in mitochondria can function as an exonuclease/proofreader for polymerase γ by either decreasing the incorporation of non-canonical dUTP into DNA or by promoting the excision of incorporated nucleotide from nascent DNA, thus expanding the spectrum of DNA damage sites exploited for proofreading as a trans-acting protein. The data suggest that p53 may contribute to defense of the cells from consequences of dUTP misincorporation in both normal and tumor cells.


The NF-κB p65/miR-23a-27a-24 cluster is a target for leukemia treatment.

  • Yong-Chang Zhang‎ et al.
  • Oncotarget‎
  • 2015‎

p65 is a transcription factor that is involved in many physiological and pathologic processes. Here we report that p65 strongly binds to the miR-23a-27a-24 cluster promoter to up-regulate its expression. As bone marrow-derived cells differentiate into red blood cells in vitro, p65/miR-23a-27a-24 cluster expression increases sharply and then declines before the appearance of red blood cells, suggesting that this cluster is negatively related to erythroid terminal differentiation. Bioinformatic and molecular biology experiments confirmed that the miR-23a-27a-24 cluster inhibited the expression of the erythroid proteome and contributed to erythroleukemia progression. In addition, high level of the p65/miR-23a-27a-24 cluster was found in APL and AML cell lines and in nucleated peripheral blood cells from leukemia patients. Furthermore, anti-leukemia drugs significantly inhibited the expression of the p65/miR-23a-27a-24 cluster in leukemia cells. Administration of the p65 inhibitor parthenolide significantly improved hematology and myelogram indices while prolonging the life span of erythroleukemia mice. Meanwhile, stable overexpression of these three miRNAs in mouse erythroleukemia cells enhanced cell malignancy. Our findings thus connect a novel regulation pathway of the p65/miR-23a-27a-24 cluster with the erythroid proteome and provide an applicable approach for treating leukemia.


Modified miR-15a has therapeutic potential for improving treatment of advanced stage colorectal cancer through inhibition of BCL2, BMI1, YAP1 and DCLK1.

  • Andrew Fesler‎ et al.
  • Oncotarget‎
  • 2018‎

Despite advances in colon cancer treatments, resistance and recurrence remain a significant challenge in treating patients. Novel therapeutic strategies are in urgent need to overcome resistance and improve patient outcomes. MicroRNA based therapeutics have potential to help combat resistance. In this study, we have shown that low miR-15a expression correlates with poor patient prognosis. We have demonstrated the therapeutic potential of miR-15a in colon cancer. miR-15a inhibits several important genes (BCL2, BMI1, YAP1 and DCLK1), decreasing cancer progression and resistance. Additionally, by replacing uracil in miR-15a with 5-fluorouracil, we created a novel miR-15a mimic with enhanced therapeutic potential. This mimic maintains target specificity and is more potent than unmodified miR-15a in vitro and inhibits colon tumor metastasis in vivo. This mimic has great potential for therapeutic development for treating colon cancer patients. This novel modification has potential to advance the development of other microRNA based therapeutics beyond miR-15a.


Optimal adjuvant chemotherapy for resected pancreatic adenocarcinoma: a systematic review and network meta-analysis.

  • Jian-Bo Xu‎ et al.
  • Oncotarget‎
  • 2017‎

Adjuvant chemotherapy improves survival in patients with resected pancreatic cancer but the optimal regimen remains unclear. We aim to compare all possible adjuvant chemotherapy in terms of overall survival and toxic effects. Pubmed, Trial registries and Cochrane library databases for randomized controlled trials were searched until November 2016. Thirteen trials were included for network analysis and the hazard ratios (HRs) for survival and odds ratios for toxic effects were assessed via Aggregate Data Drug Information System software. Only S-1 chemotherapy improved 1-year, 3-year and 5-year survival compared with observation (HR (95% CI): 3.94 (1.18-12.34); 4.08 (1.58-8.24) and 5.09 (1.16-29.83) respectively). Although not significant, gemcitabine plus uracil/tegafur was associated with poorer 1-year and 3-year survival compared with observation (HR (95% CI): 0.85 (0.16-4.03) and 0.86 (0.23-2.95)). Adding radiation to chemotherapy has no significant improvement in survival. S-1 and gemcitabine plus capecitabine are currently the most effective adjuvant therapies for pancreatic cancer. While S1 has only been validated in Asian people, higher toxicity is an issue for gemcitabine plus capecitabine.


The rabbit as an orthologous small animal model for APOBEC3A oncogenesis.

  • Hélène C Laude‎ et al.
  • Oncotarget‎
  • 2018‎

APOBEC3 are cytidine deaminases that convert cytidine to uridine residues. APOBEC3A and APOBEC3B enzymes able to target genomic DNA are involved in oncogenesis of a sizeable proportion of human cancers. While the APOBEC3 locus is conserved in mammals, it encodes from 1-7 genes. APOBEC3A is conserved in most mammals, although absent in pigs, cats and throughout Rodentia whereas APOBEC3B is restricted to the Primate order. Here we show that the rabbit APOBEC3 locus encodes two genes of which APOBEC3A enzyme is strictly orthologous to human APOBEC3A. The rabbit enzyme is expressed in the nucleus and the cytoplasm, it can deaminate cytidine, 5-methcytidine residues, nuclear DNA and induce double-strand DNA breaks. The rabbit APOBEC3A enzyme is negatively regulated by the rabbit TRIB3 pseudokinase protein which is guardian of genome integrity, just like its human counterpart. This indicates that the APOBEC3A/TRIB3 pair is conserved over approximately 100 million years. The rabbit APOBEC3A gene is widely expressed in rabbit tissues, unlike human APOBEC3A. These data demonstrate that rabbit could be used as a small animal model for studying APOBEC3 driven oncogenesis.


A pyrazolopyran derivative preferentially inhibits the activity of human cytosolic serine hydroxymethyltransferase and induces cell death in lung cancer cells.

  • Marina Marani‎ et al.
  • Oncotarget‎
  • 2016‎

Serine hydroxymethyltransferase (SHMT) is a central enzyme in the metabolic reprogramming of cancer cells, providing activated one-carbon units in the serine-glycine one-carbon metabolism. Previous studies demonstrated that the cytoplasmic isoform of SHMT (SHMT1) plays a relevant role in lung cancer. SHMT1 is overexpressed in lung cancer patients and NSCLC cell lines. Moreover, SHMT1 is required to maintain DNA integrity. Depletion in lung cancer cell lines causes cell cycle arrest and uracil accumulation and ultimately leads to apoptosis. We found that a pyrazolopyran compound, namely 2.12, preferentially inhibits SHMT1 compared to the mitochondrial counterpart SHMT2. Computational and crystallographic approaches suggest binding at the active site of SHMT1 and a competitive inhibition mechanism. A radio isotopic activity assay shows that inhibition of SHMT by 2.12 also occurs in living cells. Moreover, administration of 2.12 in A549 and H1299 lung cancer cell lines causes apoptosis at LD50 34 μM and rescue experiments underlined selectivity towards SHMT1. These data not only further highlight the relevance of the cytoplasmic isoform SHMT1 in lung cancer but, more importantly, demonstrate that, at least in vitro, it is possible to find selective inhibitors against one specific isoform of SHMT, a key target in metabolic reprogramming of many cancer types.


Degradation of the cancer genomic DNA deaminase APOBEC3B by SIV Vif.

  • Allison M Land‎ et al.
  • Oncotarget‎
  • 2015‎

APOBEC3B is a newly identified source of mutation in many cancers, including breast, head/neck, lung, bladder, cervical, and ovarian. APOBEC3B is a member of the APOBEC3 family of enzymes that deaminate DNA cytosine to produce the pro-mutagenic lesion, uracil. Several APOBEC3 family members function to restrict virus replication. For instance, APOBEC3D, APOBEC3F, APOBEC3G, and APOBEC3H combine to restrict HIV-1 in human lymphocytes. HIV-1 counteracts these APOBEC3s with the viral protein Vif, which targets the relevant APOBEC3s for proteasomal degradation. While APOBEC3B does not restrict HIV-1 and is not targeted by HIV-1 Vif in CD4-positive T cells, we asked whether related lentiviral Vif proteins could degrade APOBEC3B. Interestingly, several SIV Vif proteins are capable of promoting APOBEC3B degradation, with SIVmac239 Vif proving the most potent. This likely occurs through the canonical polyubiquitination mechanism as APOBEC3B protein levels are restored by MG132 treatment and by altering a conserved E3 ligase-binding motif. We further show that SIVmac239 Vif can prevent APOBEC3B mediated geno/cytotoxicity and degrade endogenous APOBEC3B in several cancer cell lines. Our data indicate that the APOBEC3B degradation potential of SIV Vif is an effective tool for neutralizing the cancer genomic DNA deaminase APOBEC3B. Further optimization of this natural APOBEC3 antagonist may benefit cancer therapy.


Spores of Clostridium engineered for clinical efficacy and safety cause regression and cure of tumors in vivo.

  • John T Heap‎ et al.
  • Oncotarget‎
  • 2014‎

Spores of some species of the strictly anaerobic bacteria Clostridium naturally target and partially lyse the hypoxic cores of tumors, which tend to be refractory to conventional therapies. The anti-tumor effect can be augmented by engineering strains to convert a non-toxic prodrug into a cytotoxic drug specifically at the tumor site by expressing a prodrug-converting enzyme (PCE). Safe doses of the favored prodrug CB1954 lead to peak concentrations of 6.3 µM in patient sera, but at these concentration(s) known nitroreductase (NTR) PCEs for this prodrug show low activity. Furthermore, efficacious and safe Clostridium strains that stably express a PCE have not been reported. Here we identify a novel nitroreductase from Neisseria meningitidis, NmeNTR, which is able to activate CB1954 at clinically-achievable serum concentrations. An NmeNTR expression cassette, which does not contain an antibiotic resistance marker, was stably localized to the chromosome of Clostridium sporogenes using a new integration method, and the strain was disabled for safety and containment by making it a uracil auxotroph. The efficacy of Clostridium-Directed Enzyme Prodrug Therapy (CDEPT) using this system was demonstrated in a mouse xenograft model of human colon carcinoma. Substantial tumor suppression was achieved, and several animals were cured. These encouraging data suggest that the novel enzyme and strain engineering approach represent a promising platform for the clinical development of CDEPT.


Network meta-analysis of the efficacy of first-line chemotherapy regimens in patients with advanced colorectal cancer.

  • Dong-Mei Wu‎ et al.
  • Oncotarget‎
  • 2017‎

This network meta-analysis compared the short-term and long-term efficacies of first-line chemotherapy regimens in patients with advanced colorectal cancer (CRC). The 10 regimens included folinic acid + 5-fluorouracil + oxaliplatin (FOLFOX), folinic acid + 5-fluorouracil + irinotecan (FOLFIRI), folinic acid + 5-fluorouracil + gemcitabine (FFG), folinic acid + 5-fluorouracil + trimetrexate (FFT), folinic acid + 5-fluorouracil (FF), irinotecan + oxaliplatin (IROX), raltitrexed + oxaliplatin (TOMOX), folinic acid + tegafur-uracil (FTU), raltitrexed, and capecitabine. Electronic searches were performed in the Cochrane Library, PubMed and Embase databases from inception to June 2017. Network meta-analysis combined direct and indirect evidence to obtain odds ratios (ORs) and surface under the cumulative ranking curves (SUCRA) of different chemotherapy regimens for advanced CRC. Fourteen randomized controlled trails (RCTs) covering 4,383 patients with advanced CRC were included. The results revealed that FOLFOX, FOLFIRI, IROX, and TOMOX all showed higher overall response rates (ORRs) than FF or raltitrexed. Compared with raltitrexed, the aforementioned four regimens also had higher 1-year progression-free survival (PFS) rates. In addition, FOLFOX and FOLFIRI exhibited higher disease control rates (DCRs) and 1-year PFS rates than FF or raltitrexed. Cluster analysis revealed that FOLFOX, FOLFIRI, and TOMOX had better short-term and long-term efficacies. These findings suggest FOLFOX, FOLFIRI, and TOMOX are superior to other regimens for advanced CRC. These three regimens are therefore recommended for clinical treatment of advanced CRC.


c-Myc targeted regulators of cell metabolism in a transgenic mouse model of papillary lung adenocarcinoma.

  • Yari Ciribilli‎ et al.
  • Oncotarget‎
  • 2016‎

c-Myc's role in pulmonary cancer metabolism is uncertain. We therefore investigated c-Myc activity in papillary lung adenocarcinomas (PLAC). Genomics revealed 90 significantly regulated genes (> 3-fold) coding for cell growth, DNA metabolism, RNA processing and ribosomal biogenesis and bioinformatics defined c-Myc binding sites (TFBS) at > 95% of up-regulated genes. EMSA assays at 33 novel TFBS evidenced DNA binding activity and ChIP-seq data retrieved from public repositories confirmed these to be c-Myc bound. Dual-luciferase gene reporter assays developed for RNA-Terminal-Phosphate-Cyclase-Like-1(RCL1), Ribosomal-Protein-SA(RPSA), Nucleophosmin/Nucleoplasmin-3(NPM3) and Hexokinase-1(HK1) confirmed c-Myc functional relevance and ChIP assays with HEK293T cells over-expressing ectopic c-Myc demonstrated enriched c-Myc occupancy at predicted TFBS for RCL1, NPM3, HK1 and RPSA. Note, c-Myc recruitment on chromatin was comparable to the positive controls CCND2 and CDK4. Computational analyses defined master regulators (MR), i.e. heterogeneous nuclear ribonucleoprotein A1, nucleolin, the apurinic/apyrimidinic endonuclease 1, triosephosphate-isomerase 1, folate transporter (SLC19A1) and nucleophosmin to influence activity of up to 90% of PLAC-regulated genes. Their expression was induced by 3-, 3-, 6-, 3-, 11- and 7-fold, respectively. STRING analysis confirmed protein-protein-interactions of regulated genes and Western immunoblotting of fatty acid synthase, serine hydroxyl-methyltransferase 1, arginine 1 and hexokinase 2 showed tumor specific induction. Published knock down studies confirmed these proteins to induce apoptosis by disrupting neoplastic lipogenesis, by endorsing uracil accumulation and by suppressing arginine metabolism and glucose-derived ribonucleotide biosynthesis. Finally, translational research demonstrated high expression of MR and of 47 PLAC up-regulated genes to be associated with poor survival in lung adenocarcinoma patients (HR 3.2 p < 0.001) thus, providing a rationale for molecular targeted therapies in PLACs.


Epigenetic silencing of tumor suppressor miR-3151 contributes to Chinese chronic lymphocytic leukemia by constitutive activation of MADD/ERK and PIK3R2/AKT signaling pathways.

  • Lu Qian Wang‎ et al.
  • Oncotarget‎
  • 2015‎

We hypothesize that miR-3151, localized to a GWAS-identified chronic lymphocytic leukemia (CLL) risk locus (8q22.3), is a tumor suppressor miRNA silenced by promoter DNA methylation in CLL. The promoter of miR-3151 was methylated in 5/7 (71%) CLL cell lines, 30/98 (31%) diagnostic primary samples, but not normal controls. Methylation of miR-3151 correlated inversely with expression. Treatment with 5-Aza-2'-deoxycytidine led to promoter demethylation and miR-3151 re-expression. Luciferase assay confirmed MAP-kinase activating death domain (MADD) and phosphoinositide-3-kinase, regulatory subunit 2 (PIK3R2) as direct targets of miR-3151. Moreover, restoration of miR-3151 resulted in inhibition of cellular proliferation and enhanced apoptosis, repression of MADD and PIK3R2, downregulation of MEK/ERK and PI3K/AKT signaling, and repression of MCL1. Lastly, miR-3151 methylation was significantly associated with methylation of miR-203 and miR-34b/c in primary CLL samples. Therefore, this study showed that miR-3151 is a tumor suppressive miRNA frequently hypermethylated and hence silenced in CLL. miR-3151 silencing by DNA methylation protected CLL cells from apoptosis through over-expression of its direct targets MADD and PIK3R2, hence constitutive activation of MEK/ERK and PI3K/AKT signaling respectively, and consequently over-expression of MCL1.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: