Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

The E3 ubiquitin ligase Itch is required for B-cell development.

  • Xiaoling Liu‎ et al.
  • Scientific reports‎
  • 2019‎

The E3 ubiquitin ligase Itch interacts with Foxo1 and targets it for ubiquitination and degradation during follicular helper T-cell differentiation, whereas the transcription factor Foxo1 plays a critical role in B-cell development. Thus, we proposed that Itch mediates B-cell differentiation. Unexpectedly, we found that Itch deficiency downregulated Foxo1 expression in B cells. Itch cKO (conditional knock out in B cells) mice had fewer pro-B cells in the bone marrow, more small resting IgM-IgD-B cells in the periphery, and lower B-cell numbers in the lymph nodes through decreased Foxo1-mediated IL-7Rα, RAG, and CD62L expression, respectively. Importantly, Itch deficiency reduced Foxo1 mRNA expression by up-regulating JunB-mediated miR-182. Finally, Foxo1 negatively regulated JunB expression by up-regulating Itch. Thus, we have identified a novel regulatory axis between Itch and Foxo1 in B cells, suggesting that Itch is essential for B-cell development.


Genome-wide identification and characterization of RBR ubiquitin ligase genes in soybean.

  • Pei Chen‎ et al.
  • PloS one‎
  • 2014‎

RBR (RING1-IBR-RING2) proteins play an important role in protein ubiquitination and are involved in many cellular processes. Recent studies showed plant RBR genes were induced by abiotic and biotic stresses. However, detailed studies on RBR genes in the important oil crop, soybean (Glycine max (L.) Merr.), is still lacking. Here we performed a genome-wide search and identified 24 RBR domain-containing genes from the soybean genome sequence and cloned 11 of them. Most soybean RBR proteins contain a highly conserved RBR supra-domain. Phylogenetic analyses indicated all 24 soybean RBR proteins are most related to the RBR proteins from Phaseolus vulgaris, and could be classified into seven groups including Ariadne A, Ariadne B, ARA54, Plant IIA, Plant IIB, Plant IIC, and Helicase. Tandem duplication and block duplication were found among the Ariadne B and Plant IIC group of soybean RBR genes. Despite the conserved RBR supra-domain, there are extensive variations in the additional protein motifs and exon-intron structures between different groups, which indicate they might have diverse functions. Most soybean RBR proteins are predicted to localize in nucleus, and four of them were experimentally confirmed by GFP fusion proteins. Soybean RBR genes are broadly expressed in many tissue types with a little more abundant in the roots and flowers than leaves, stems, and seeds. The expression of GmRTRTP3 (Plant IIB) and GmRTRTP5 (Plant IIC) are induced by NaCl treatment, which suggests these RBR genes might be involved in soybean response to abiotic stresses.


The E3 Ubiquitin Ligase RNF5 Facilitates SARS-CoV-2 Membrane Protein-Mediated Virion Release.

  • Zhen Yuan‎ et al.
  • mBio‎
  • 2021‎

As an enveloped virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a membrane protein (M) that mediates viral release from cellular membranes. However, the molecular mechanisms of SARS-CoV-2 virion release remain poorly understood. In the present study, we performed RNA interference (RNAi) screening and identified the E3 ligase RNF5, which mediates the ubiquitination of SARS-CoV-2 M at residue K15 to enhance the interaction of the viral envelope protein (E) with M, whereas the deubiquitinating enzyme POH1 negatively regulates this process. The M-E complex ensures the uniform size of viral particles for viral maturation and mediates virion release. Moreover, M traffics from the Golgi apparatus to autophagosomes and uses autophagosomes for virion release, and this process is dependent on RNF5-mediated ubiquitin modification and M-E interaction. These results demonstrate that ubiquitin modification of SARS-CoV-2 M stabilizes the M-E complex and uses autophagosomes for virion release. IMPORTANCE Enveloped virus particles are released from the membranes of host cells, and viral membrane proteins (M) are critical for this process. A better understanding of the molecular mechanisms of SARS-CoV-2 assembly and budding is critical for the development of antiviral therapies. Envelope protein (E) and M of SARS-CoV-2 form complexes to mediate viral assembly and budding. RNF5 was identified to play a role as the E3 ligase, and POH1 was demonstrated to function as the deubiquitinating enzyme of SARS-CoV-2 M. The two components collectively regulate the interaction of M with E to promote viral assembly and budding. Ubiquitinated M uses autophagosomes for viral release. Our findings provide insights into the mechanisms of SARS-CoV-2 assembly and budding, demonstrating the importance of ubiquitination modification and autophagy in viral replication.


The ubiquitin ligase RNF5 determines acute myeloid leukemia growth and susceptibility to histone deacetylase inhibitors.

  • Ali Khateb‎ et al.
  • Nature communications‎
  • 2021‎

Acute myeloid leukemia (AML) remains incurable, largely due to its resistance to conventional treatments. Here, we find that increased abundance of the ubiquitin ligase RNF5 contributes to AML development and survival. High RNF5 expression in AML patient specimens correlates with poor prognosis. RNF5 inhibition decreases AML cell growth in culture, in patient-derived xenograft (PDX) samples and in vivo, and delays development of MLL-AF9-driven leukemogenesis in mice, prolonging their survival. RNF5 inhibition causes transcriptional changes that overlap with those seen upon histone deacetylase (HDAC)1 inhibition. RNF5 induces the formation of K29 ubiquitin chains on the histone-binding protein RBBP4, promoting its recruitment to and subsequent epigenetic regulation of genes involved in AML maintenance. Correspondingly, RNF5 or RBBP4 knockdown enhances AML cell sensitivity to HDAC inhibitors. Notably, low expression of both RNF5 and HDAC coincides with a favorable prognosis. Our studies identify an ERAD-independent role for RNF5, demonstrating that its control of RBBP4 constitutes an epigenetic pathway that drives AML, and highlight RNF5/RBBP4 as markers useful to stratify patients for treatment with HDAC inhibitors.


Cancer-testis antigen MAGE-C2 binds Rbx1 and inhibits ubiquitin ligase-mediated turnover of cyclin E.

  • Jiaqing Hao‎ et al.
  • Oncotarget‎
  • 2015‎

Cancer-testis antigen MAGE-C2 is normally expressed in testis but aberrantly expressed in various kinds of tumors. Its functions in tumor cells are mostly unknown. Here, we show that MAGE-C2 binds directly to the RING domain protein Rbx1, and participates in Skp1-Cullin1-F box protein (SCF) complex. Furthermore, MAGE-C2 can inhibit the E3 ubiquitin ligase activity of SCF complex. Ablation of endogenous MAGE-C2 decreases the level of cyclin E and accelerates cyclin E turnover by inhibiting ubiquitin-mediated proteasome degradation. Overexpression of MAGE-C2 increases the level of cyclin E and promotes G1-S transition and cell proliferation, and the results are further confirmed by knockdown of MAGE-C2. Overall, the study indicates that MAGE-C2 is involved in SCF complex and increases the stability of cyclin E in tumor cells.


The tumor suppressor OVCA1 is a short half-life protein degraded by the ubiquitin-proteasome pathway.

  • Yingwei Lin‎ et al.
  • Oncology letters‎
  • 2019‎

Ovarian cancer gene 1 (OVCA1) is a tumor suppressor associated with ovarian cancer, which is involved in cell proliferation regulation, embryonic development and tumorigenesis. Loss of heterozygosity in the OVCA1 gene occurs in 50-86% of cases of ovarian cancer; however, the physiological and biochemical functions of OVCA1 are not yet clear. In the present study, the stability and degradation of OVCA1 were investigated in A2780, Hela and 293 cells. The results revealed that the OVCA1 protein was unstable by MG132 inhibiting proteasome mediated degradation, co-immunoprecipitation and half-life measurement experiments. The cellular protein levels of endogenous OVCA1 were too low to be detected by western blotting. In addition, carbobenzoxy-L-leucyl-L-leucyl-L-leucinal inhibited the degradation of OVCA1 in cells. The co-immunoprecipitation assay revealed that the OVCA1 protein interacted with ubiquitin to form a poly-ubiquitinated complex in cells. The half-life of OVCA1, measured by inhibiting protein synthesis with cycloheximide, was <2 h. The present study demonstrated that OVCA1 may be degraded by the ubiquitin-mediated proteasome pathway and may be considered a short half-life protein. In conclusion, the regulation of OVCA1 protein degradation via the ubiquitin-proteasome pathway may represent a novel direction in the development of ovarian cancer therapy.


MiR-96-5p Suppresses Progression of Arsenite-Induced Human Keratinocyte Proliferation and Malignant Transformation by Targeting Denticleless E3 Ubiquitin Protein Ligase Homolog.

  • Yan Li‎ et al.
  • Toxics‎
  • 2023‎

Long-term exposure to arsenic has been linked to a variety of cancers, among which skin cancer is the most prevalent form. However, the mechanism underlying arsenic carcinogenesis is unclear, and there is still limited information on the role of miRNAs in arsenic-induced skin cancer. This study aims to explore the role of miR-96-5p in the arsenite-induced proliferation and malignant transformation of human HaCaT keratinocytes. The GEO database (accession numbers GSE97303, GSE97305, and GSE97306) was used to extract mRNA and miRNA expression profiles of HaCaT cells treated with or without 0.1 μmol/L sodium arsenite for 3 and 7 weeks. In this paper, according to the CCK8 assay result, HaCaT cells exposed to 0.1 μmol/L sodium arsenite for 48 h were finalized. CCK8, MTT, EdU incorporation, and colony formation assays were used to determine the viability and proliferation of HaCaT cells and transformed HaCaT (T-HaCaT) cells. The subcellular localization and relative expression levels of DTL, as well as miR-96-5p in HaCaT cells induced by arsenite, were determined via immunofluorescence, RT-qPCR, and Western blot. Dual-luciferase reporter assay was performed to identify miR-96-5p bound directly to DTL. Transfection of miR-96-5p mimics or DTL siRNA was conducted to verify the arsenite-induced viability of HaCaT cells and T-HaCaT cells. T-HaCaT cells and nude mice were used to construct arsenite-induced malignant transformation and an in vivo xenograft model to demonstrate the over-expressed effect of miR-96-5p. The results showed that DTL was the target gene of miR-96-5p. Meanwhile, we also found that 0.1 μmol/L sodium arsenite upregulated DTL by decreasing the miR-96-5p level, leading to the proliferation and malignant transformation of HaCaT cells. MiR-96-5p agomir treatment slowed the growth of transplanted HaCaT cells transformed by arsenite in a manner associated with DTL downregulation in the nude mice xenograft model. Taken together, we confirmed that miR-96-5p, as a potent regulator of DTL, suppressed arsenite-induced HaCaT cell proliferation and malignant transformation, which might provide a novel therapeutic target for the treatment of arsenic-induced skin cancer.


IL-37d enhances COP1-mediated C/EBPβ degradation to suppress spontaneous neutrophil migration and tumor progression.

  • Yaxin Guo‎ et al.
  • Cell reports‎
  • 2024‎

The spontaneous migration of bone marrow neutrophils (BMNs) is typically induced by distant tumor cells during the early stage of the tumor and critically controls tumor progression and metastases. Therefore, identifying the key molecule that prevents this process is extremely important for suppressing tumors. Interleukin-37 (IL-37) can suppress pro-inflammatory cytokine generation via an IL-1R8- or Smad3-mediated pathway. Here, we demonstrate that human neutrophil IL-37 is responsively reduced by tumor cells and the recombinant IL-37 isoform d (IL-37d) significantly inhibits spontaneous BMN migration and tumor lesion formation in the lung by negatively modulating CCAAT/enhancer binding protein beta (C/EBPβ) in a Lewis lung carcinoma (LLC)-inducing lung cancer mouse model. Mechanistically, IL-37d promotes C/EBPβ ubiquitination degradation by facilitating ubiquitin ligase COP1 recruitment and disrupts C/EBPβ DNA binding abilities, thereby reducing neutrophil ATP generation and migration. Our work reveals an anti-tumor mechanism for IL-37 via destabilization of C/EBPβ to prevent spontaneous BMN migration and tumor progression.


Role of activated Rac1/Cdc42 in mediating endothelial cell proliferation and tumor angiogenesis in breast cancer.

  • Ji Ma‎ et al.
  • PloS one‎
  • 2013‎

Angiogenesis is a well-established target in anti-cancer therapy. Although vascular endothelial growth factor (VEGF)-mediated angiogenesis apparently requires the Rho GTPases Rac1 and Cdc42, the relevant mechanisms are unclear. Here, we determined that activated Rac1/Cdc42 in MCF-7 breast cancer cells could decrease p53 protein levels and increase VEGF secretion to promote proliferation and tube formation of human umbilical vein endothelial cells (HUVECs). However, these effects are reversed after ubiquitin-proteasome breakage. In exploring potential mechanisms for this relationship, we confirmed that activated Rac1/Cdc42 could enhance p53 protein ubiquitination and weaken p53 protein stability to increase VEGF expression. Furthermore, in a xenograft model using nude mice that stably express active Rac1/Cdc42 protein, active Rac1/Cdc42 decreased p53 levels and increased VEGF expression. Additionally, tumor angiogenesis was inhibited, and p53 protein levels were augmented, by intratumoral injection of the ubiquitin-proteasome inhibitor MG132. Finally in 339 human breast cancer tissues, our analyses indicated that Rac1/Cdc42 expression was related to advanced TNM staging, high proliferation index, ER status, and positive invasive features. In particular, our data suggests that high Rac1/Cdc42 expression is correlated with low wt-p53 and high VEGF expression. We conclude that activated Rac1/Cdc42 is a vascular regulator of tumor angiogenesis and that it may reduce stability of the p53 protein to promote VEGF expression by enhancing p53 protein ubiquitin.


The notch pathway promotes NF-κB activation through Asb2 in T cell acute lymphoblastic leukemia cells.

  • Wei Wu‎ et al.
  • Cellular & molecular biology letters‎
  • 2018‎

Oncogenic Notch1 is known to activate the NF-κB pathway in T cell acute lymphoblastic leukemia (T-ALL) and to up-regulate the transcription of Asb2α, a specificity factor for an E3 ubiquitin ligase complex that plays an important role in hematopoietic differentiation. Therefore, we hypothesize that Notch1 might regulate the NF-κB pathway through Asb2α.


Targeting TRIM54/Axin1/β-Catenin Axis Prohibits Proliferation and Metastasis in Hepatocellular Carcinoma.

  • Jinrong Zhu‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Accumulating evidence demonstrates that dysregulation of ubiquitin-mediated degradation of oncogene or suppressors plays an important role in several diseases. However, the function and molecular mechanisms of ubiquitin ligases underlying hepatocellular carcinoma (HCC) remain elusive. In the current study, we show that overexpression of TRIM54 was associated with HCC progression. TRIM54 overexpression facilitates proliferation and lung metastasis; however, inhibition of TRIM54 significantly suppressed HCC progression both in vitro and in vivo. Mechanically, we demonstrated that TRIM54 directly interacts with Axis inhibition proteins 1 (Axin1) and induces E3 ligase-dependent proteasomal turnover of Axin1 and substantially induces sustained activation of wnt/β-catenin in HCC cell lines. Furthermore, we showed that inhibition of the wnt/β-catenin signaling pathway via small molecule inhibitors significantly suppressed TRIM54-induced proliferation. Our data suggest that TRIM54 might function as an oncogenic gene and targeting the TRIM54/Axin1/β-catenin axis signaling may be a promising prognostic factor and a valuable therapeutic target for HCC.


Triclosan Enhances the Clearing of Pathogenic Intracellular Salmonella or Candida albicans but Disturbs the Intestinal Microbiota through mTOR-Independent Autophagy.

  • Chao Wang‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2018‎

Triclosan (TCS) is a broad-spectrum antimicrobial agent, whose well-known antibacterial mechanism is inhibiting lipid synthesis. Autophagy, an innate immune response, is an intracellular process that delivers the cargo including pathogens to lysosomes for degradation. In this study, we first demonstrated that TCS induced autophagy in a dose-dependent manner in non-phagocytic cells (HeLa) and in macrophages (Raw264.7) and in vivo. The western blot results also revealed that TCS induced autophagy via the AMPK/ULK1 and JNK/ERK/p38 pathways independent of mTOR. The immunofluorescence results indicated that TCS up-regulated the expression of the ubiquitin receptors NDP52 and p62 and strengthened the co-localization of these receptors with Salmonella enterica Typhimurium (S. typhimurium) or Candida albicans (C. albicans) in infected MΦ cells. In addition, sub-lethal concentrations of TCS enhanced the clearing of the pathogens S. typhimurium or C. albicans in infected MΦ and in corresponding mouse infection models in vivo. Specifically, we found that a sub-inhibitory concentration of TCS induced autophagy, leading to an imbalance of the intestinal microflora in mice through the analysis of 16s rRNA Sequencing. Together, these results demonstrated that TCS induced autophagy, which enhanced the killing against pathogenic S. typhimurium or C. albicans within mammal cells but broke the balance of the intestinal microflora.


Fine-Tuning of Shh/Gli Signaling Gradient by Non-proteolytic Ubiquitination during Neural Patterning.

  • Pengcheng Ma‎ et al.
  • Cell reports‎
  • 2019‎

Sonic Hedgehog (Shh) signaling plays crucial roles in patterning the ventral neural tube, which is transformed into opposing gradients of repressor and activator forms of Glis. Here, we show that the fine-tuning of the shape of the Gli gradients through non-proteolytic ubiquitination-mediated nuclear exportation plays an important role in the control of local neural cell fate. Loss of RNF220, a ventral neural-specific ubiquitin E3 ligase, leads to ventral expansion of the intermediate V0 and dorsal expansion of the ventral V3 neurons, while reducing the V1, V2, and motor neurons between them. We show that RNF220 interacts with all Glis, either in their activator or repressor forms; induces their K63-linked ubiquitination; and promotes their nuclear export, likely by unmasking a nuclear export signal in the zinc finger domain. We propose that RNF220 works to refine the Gli gradients during neural patterning by limiting the effective Gli levels in the nucleus.


Smurf1 and Smurf2 mediated polyubiquitination and degradation of RNF220 suppresses Shh-group medulloblastoma.

  • Yuwei Li‎ et al.
  • Cell death & disease‎
  • 2023‎

Sonic hedgehog (Shh)-group medulloblastoma (MB) (Shh-MB) encompasses a clinically and molecularly distinct group of cancers originating from the developing nervous system with aberrant high Shh signaling as a causative driver. We recently reported that RNF220 is required for sustained high Shh signaling during Shh-MB progression; however, how high RNF220 expression is achieved in Shh-MB is still unclear. In this study, we found that the ubiquitin E3 ligases Smurf1 and Smurf2 interact with RNF220, and target it for polyubiquitination and degradation. In MB cells, knockdown or overexpression of Smurf1 or Smurf2 promotes or inhibits cell proliferation, colony formation and xenograft growth, respectively, by controlling RNF220 protein levels, and thus modulating Shh signaling. Furthermore, in clinical human MB samples, the protein levels of Smurf1 or Smurf2 were negatively correlated with those of RNF220 or GAB1, a Shh-MB marker. Overall, this study highlights the importance of the Smurf1- and Smurf2-RNF220 axes during the pathogenesis of Shh-MB and provides new therapeutic targets for Shh-MB treatment.


Mice lacking the PSD-95-interacting E3 ligase, Dorfin/Rnf19a, display reduced adult neurogenesis, enhanced long-term potentiation, and impaired contextual fear conditioning.

  • Hanwool Park‎ et al.
  • Scientific reports‎
  • 2015‎

Protein ubiquitination has a significant influence on diverse aspects of neuronal development and function. Dorfin, also known as Rnf19a, is a RING finger E3 ubiquitin ligase implicated in amyotrophic lateral sclerosis and Parkinson's disease, but its in vivo functions have not been explored. We report here that Dorfin is a novel binding partner of the excitatory postsynaptic scaffolding protein PSD-95. Dorfin-mutant (Dorfin(-/-)) mice show reduced adult neurogenesis and enhanced long-term potentiation in the hippocampal dentate gyrus, but normal long-term potentiation in the CA1 region. Behaviorally, Dorfin(-/-) mice show impaired contextual fear conditioning, but normal levels of cued fear conditioning, fear extinction, spatial learning and memory, object recognition memory, spatial working memory, and pattern separation. Using a proteomic approach, we also identify a number of proteins whose ubiquitination levels are decreased in the Dorfin(-/-) brain. These results suggest that Dorfin may regulate adult neurogenesis, synaptic plasticity, and contextual fear memory.


Sequential stabilization of RNF220 by RLIM and ZC4H2 during cerebellum development and Shh-group medulloblastoma progression.

  • Yuwei Li‎ et al.
  • Journal of molecular cell biology‎
  • 2022‎

Sonic hedgehog (Shh) signaling is essential for the proliferation of cerebellar granule neuron progenitors (CGNPs), and its misregulation is linked to various disorders, including cerebellar cancer medulloblastoma (MB). During vertebrate neural development, RNF220, a ubiquitin E3 ligase, is involved in spinal cord patterning by modulating the subcellular location of glioma-associated oncogene homologs (Glis) through ubiquitination. RNF220 is also required for full activation of Shh signaling during cerebellum development in an epigenetic manner through targeting embryonic ectoderm development. ZC4H2 was reported to be involved in spinal cord patterning by acting as an RNF220 stabilizer. Here, we provided evidence to show that ZC4H2 is also required for full activation of Shh signaling in CGNP and MB progression by stabilizing RNF220. In addition, we found that the ubiquitin E3 ligase RING finger LIM domain-binding protein (RLIM) is responsible for ZC4H2 stabilization via direct ubiquitination, through which RNF220 is also thus stabilized. RLIM is a direct target of Shh signaling and is also required for full activation of Shh signaling in CGNP and MB cell proliferation. We further provided clinical evidence to show that the RLIM‒ZC4H2‒RNF220 cascade is involved in Shh-group MB progression. Disease-causative human RLIM and ZC4H2 mutations affect their interaction and regulation. Therefore, our study sheds light on the regulation of Shh signaling during cerebellar development and MB progression and provides insights into neural disorders caused by RLIM or ZC4H2 mutations.


Parkin and PINK1 mitigate STING-induced inflammation.

  • Danielle A Sliter‎ et al.
  • Nature‎
  • 2018‎

Although serum from patients with Parkinson's disease contains elevated levels of numerous pro-inflammatory cytokines including IL-6, TNF, IL-1β, and IFNγ, whether inflammation contributes to or is a consequence of neuronal loss remains unknown1. Mutations in parkin, an E3 ubiquitin ligase, and PINK1, a ubiquitin kinase, cause early onset Parkinson's disease2,3. Both PINK1 and parkin function within the same biochemical pathway and remove damaged mitochondria from cells in culture and in animal models via mitophagy, a selective form of autophagy4. The in vivo role of mitophagy, however, is unclear, partly because mice that lack either PINK1 or parkin have no substantial Parkinson's-disease-relevant phenotypes5-7. Mitochondrial stress can lead to the release of damage-associated molecular patterns (DAMPs) that can activate innate immunity8-12, suggesting that mitophagy may mitigate inflammation. Here we report a strong inflammatory phenotype in both Prkn-/- and Pink1-/- mice following exhaustive exercise and in Prkn-/-;mutator mice, which accumulate mutations in mitochondrial DNA (mtDNA)13,14. Inflammation resulting from either exhaustive exercise or mtDNA mutation is completely rescued by concurrent loss of STING, a central regulator of the type I interferon response to cytosolic DNA15,16. The loss of dopaminergic neurons from the substantia nigra pars compacta and the motor defect observed in aged Prkn-/-;mutator mice are also rescued by loss of STING, suggesting that inflammation facilitates this phenotype. Humans with mono- and biallelic PRKN mutations also display elevated cytokines. These results support a role for PINK1- and parkin-mediated mitophagy in restraining innate immunity.


CDK16 Phosphorylates and Degrades p53 to Promote Radioresistance and Predicts Prognosis in Lung Cancer.

  • Jie Xie‎ et al.
  • Theranostics‎
  • 2018‎

Rationale: Radioresistance is considered the main cause of local relapse in lung cancer. However, the molecular mechanisms of radioresistance remain poorly understood. This study investigates the role of CDK16 in radioresistance of human lung cancer cells. Methods: The expression levels of CDK16 were determined by immunohistochemistry in lung cancer tissues and adjacent normal lung tissues. Immunoprecipitation assay and GST pulldown were utilized to detect the protein-protein interaction. The phosphorylation of p53 was evaluated by in vitro kinase assay. Poly-ubiquitination of p53 was examined by in vivo ubiquitination assay. Cell growth and apoptosis, ROS levels and DNA damage response were measured for functional analyses. Results: We showed that CDK16 is frequently overexpressed in lung cancer cells and tissues, and high levels of CDK16 are correlated with lymph node stage and poor prognosis in lung cancer patients. Furthermore, we provided evidence that CDK16 binds to and phosphorylates p53 at Ser315 site to inhibit transcriptional activity of p53. Moreover, we uncovered that this phosphorylation modification accelerates p53 degradation via the ubiquitin/proteasome pathway. Importantly, we demonstrated that CDK16 promotes radioresistance by suppressing apoptosis and ROS production as well as inhibiting DNA damage response in lung cancer cells in a p53-dependent manner. Conclusion: Our findings suggest that CDK16 negatively modulates p53 signaling pathway to promote radioresistance, and therefore represents a promising therapeutic target for lung cancer radiotherapy.


Targeting epiregulin in the treatment-damaged tumor microenvironment restrains therapeutic resistance.

  • Changxu Wang‎ et al.
  • Oncogene‎
  • 2022‎

The tumor microenvironment (TME) represents a milieu enabling cancer cells to develop malignant properties, while concerted interactions between cancer and stromal cells frequently shape an "activated/reprogramed" niche to accelerate pathological progression. Here we report that a soluble factor epiregulin (EREG) is produced by senescent stromal cells, which non-cell-autonomously develop the senescence-associated secretory phenotype (SASP) upon DNA damage. Genotoxicity triggers EREG expression by engaging NF-κB and C/EBP, a process supported by elevated chromatin accessibility and increased histone acetylation. Stromal EREG reprograms the expression profile of recipient neoplastic cells in a paracrine manner, causing upregulation of MARCHF4, a membrane-bound E3 ubiquitin ligase involved in malignant progression, specifically drug resistance. A combinational strategy that empowers EREG-specific targeting in treatment-damaged TME significantly promotes cancer therapeutic efficacy in preclinical trials, achieving response indices superior to those of solely targeting cancer cells. In clinical oncology, EREG is expressed in tumor stroma and handily measurable in circulating blood of cancer patients post-chemotherapy. This study establishes EREG as both a targetable SASP factor and a new noninvasive biomarker of treatment-damaged TME, thus disclosing its substantial value in translational medicine.


The UbL-UBA Ubiquilin4 protein functions as a tumor suppressor in gastric cancer by p53-dependent and p53-independent regulation of p21.

  • Shengkai Huang‎ et al.
  • Cell death and differentiation‎
  • 2019‎

Ubiquilin4 (Ubqln4), a member of the UbL-UBA protein family, serves as an adaptor in the degradation of specific substrates via the proteasomal pathway. However, the biological function of Ubqln4 remains largely unknown, especially in cancer. Here, we reported that Ubqln4 was downregulated in gastric cancer tissues and functioned as a tumor suppressor by inhibiting gastric cancer cell proliferation in vivo and in vitro. Overexpression of Ubqln4-induced cellular senescence and G1-S cell cycle arrest in gastric cancer cells and activated the p53/p21 axis. Moreover, Ubqln4 regulated p21 through both p53-dependent and p53-independent manners. Ubqln4 interacted with RNF114, an E3 ubiquitin ligase of p21, and negatively regulated its expression level, which in turn stabilized p21 by attenuating proteasomal degradation of p21. These effects of Ubqln4 were partly abrogated in gastric cancer cells upon silencing of p21. Our findings not only establish the anti-tumor potential of Ubqln4 in gastric cancer but also reveal a role for Ubqln4 in regulation of the cell cycle and cellular senescence via stabilizing p21.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: