2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 1 papers out of 1 papers

Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity.

  • Alicyn Reverdy‎ et al.
  • PloS one‎
  • 2018‎

Protein lysine acetylation is a post-translational modification that alters the charge, conformation, and stability of proteins. A number of genome-wide characterizations of lysine-acetylated proteins, or acetylomes, in bacteria have demonstrated that lysine acetylation occurs on proteins with a wide diversity of functions, including central metabolism, transcription, chemotaxis, and cell size regulation. Bacillus subtilis is a model organism for studies of sporulation, motility, cell signaling, and multicellular development (or biofilm formation). In this work, we investigated the role of global protein lysine acetylation in multicellular development in B. subtilis. We analyzed the B. subtilis acetylome under biofilm-inducing conditions and identified acetylated proteins involved in multicellularity, specifically, swarming and biofilm formation. We constructed various single and double mutants of genes known to encode enzymes involved in global protein lysine acetylation in B. subtilis. Some of those mutants showed a defect in swarming motility while others demonstrated altered biofilm phenotypes. Lastly, we picked two acetylated proteins known to be important for biofilm formation, YmcA (also known as RicA), a regulatory protein critical for biofilm induction, and GtaB, an UTP-glucose-1-phosphate uridylyltransferase that synthesizes a nucleotide sugar precursor for biosynthesis of exopolysaccharide, a key biofilm matrix component. We performed site-directed mutagenesis on the acetylated lysine codons in ymcA and gtaB, respectively, and assayed cells bearing those point mutants for biofilm formation. The mutant alleles of ymcA(K64R), gtaB(K89R), and gtaB(K191R) all demonstrated a severe biofilm defect. These results indicate the importance of acetylated lysine residues in both YmcA and GtaB. In summary, we propose that protein lysine acetylation plays a global regulatory role in B. subtilis multicellularity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: