Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 9 papers out of 9 papers

The role of octopamine and tyramine in Drosophila larval locomotion.

  • Mareike Selcho‎ et al.
  • The Journal of comparative neurology‎
  • 2012‎

The characteristic crawling behavior of Drosophila larvae consists of a series of rhythmic waves of peristalsis and episodes of head swinging and turning. The two biogenic amines octopamine and tyramine have recently been shown to modulate various parameters of locomotion, such as muscle contraction, the time spent in pausing or forward locomotion, and the initiation and maintenance of rhythmic motor patterns. By using mutants having altered octopamine and tyramine levels and by genetic interference with both systems we confirm that signaling of these two amines is necessary for larval locomotion. We show that a small set of about 40 octopaminergic/tyraminergic neurons within the ventral nerve cord is sufficient to trigger proper larval locomotion. Using single-cell clones, we describe the morphology of these neurons individually. Given various potential roles of octopamine and tyramine in the larval brain, such as locomotion, learning and memory, stress-induced behaviors or the regulation of the energy state, functions that are often not easy to discriminate, we dissect here for the first time a subset of this complex circuit that modulates specifically larval locomotion. Thus, these data will help to understand-for a given neuronal modulator-how specific behavioral functions are executed within distinct subcircuits of a complex neuronal network.


Tyramine as an independent transmitter and a precursor of octopamine in the locust central nervous system: an immunocytochemical study.

  • Natalia L Kononenko‎ et al.
  • The Journal of comparative neurology‎
  • 2009‎

Octopamine and its precursor tyramine are biogenic amines that are found ubiquitously in insects, playing independent but opposite neuromodulatory roles in a wide spectrum of behaviors, ranging from locomotion and aggression to learning and memory. We used recently available antibodies to octopamine and tyramine to label the distribution of immunoreactive profiles in the brain and ventral nerve cord of the locust. In the brain and all ventral cord ganglia all known octopaminergic neurons were labeled with both the tyramine and octopamine antisera. In the brain the subesophageal ganglion and all fused abdominal ganglia we found somata that were only labeled by the tyramine antibody. Some prominent architectural features of the brain, like the protocerebral bridge, the central body, and associated neuropils, also contain intensely labeled tyramine-immunoreactive fibers. In addition, tyraminergic fibers occur in all ganglia of the ventral cord. For known octopaminergic neurons of the thoracic ganglia, octopamine-immunoreactivity was confined to the cell body and to the varicosities or boutons, whereas fiber processes always expressed tyramine-immunoreactivity. The distribution of the tyramine and octopamine content within these neurons turned out to be dependent on how the animal was handled before fixation for immunocytochemistry. We conclude that tyramine is an independent transmitter in locusts, and that in octopaminergic neurons the ratio between octopamine and its precursor tyramine is highly dynamic.


Identification of distinct tyraminergic and octopaminergic neurons innervating the central complex of the desert locust, Schistocerca gregaria.

  • Uwe Homberg‎ et al.
  • The Journal of comparative neurology‎
  • 2013‎

The central complex is a group of modular neuropils in the insect brain with a key role in visual memory, spatial orientation, and motor control. In desert locusts the neurochemical organization of the central complex has been investigated in detail, including the distribution of dopamine-, serotonin-, and histamine-immunoreactive neurons. In the present study we identified neurons immunoreactive with antisera against octopamine, tyramine, and the enzymes required for their synthesis, tyrosine decarboxylase (TDC) and tyramine β-hydroxylase (TBH). Octopamine- and tyramine immunostaining in the central complex differed strikingly. In each brain hemisphere tyramine immunostaining was found in four neurons innervating the noduli, 12-15 tangential neurons of the protocerebral bridge, and about 17 neurons that supplied the anterior lip region and parts of the central body. In contrast, octopamine immunostaining was present in two bilateral pairs of ascending fibers innervating the upper division of the central body and a single pair of neurons with somata near the esophageal foramen that gave rise to arborizations in the protocerebral bridge. Immunostaining for TDC, the enzyme converting tyrosine to tyramine, combined the patterns seen with the tyramine- and octopamine antisera. Immunostaining for TBH, the enzyme converting tyramine to octopamine, in contrast, was strikingly similar to octopamine immunolabeling. We conclude that tyramine and octopamine act as neurotransmitters/modulators in distinct sets of neurons of the locust central complex with TBH likely being the rate-limiting enzyme for octopamine synthesis in a small subpopulation of TDC-containing neurons.


Octopaminergic system in the central nervous system of the terrestrial slug Limax.

  • Ryota Matsuo‎ et al.
  • The Journal of comparative neurology‎
  • 2016‎

The terrestrial slug Limax can learn to avoid the odor of some food (e.g., carrot juice) by the simultaneous presentation of an aversive stimulus (e.g., bitterness of quinidine). This type of associative memory critically depends on the higher olfactory center, the procerebrum in the central nervous system. The modulation of the local field potential (LFP) oscillation recorded on the procerebrum has been thought to reflect the information processing of the odor that elicits the behavioral change, such as avoidance of the aversively learned odor or approaching an attractive food's odor. Here we focused on octopamine, an important neuromodulator involved in learning and memory in invertebrates, and considered to be the invertebrate equivalent of noradrenaline. We identified a few octopaminergic neurons in the subesophageal and buccal ganglia, and a larger number near the procerebrum in the cerebral ganglia, using immunohistochmical staining and in situ hybridization of tyramine β-hydroxylase, an octopamine-synthesizing enzyme. Application of octopamine reduced the frequency of LFP oscillation in a dose-dependent manner, and this effect was inhibited by preincubation with phentolamine. High-performance liquid chromatography analysis revealed the presence of octopamine, noradrenaline, and adrenaline in the central nervous system. Unexpectedly, noradrenaline and adrenaline both accelerated the LFP oscillation, in contrast to octopamine. Our results suggest that octopamine and noradrenaline have distinct functions in olfactory information processing, in spite of their structural similarity. J. Comp. Neurol. 524:3849-3864, 2016. © 2016 Wiley Periodicals, Inc.


A map of octopaminergic neurons in the Drosophila brain.

  • Sebastian Busch‎ et al.
  • The Journal of comparative neurology‎
  • 2009‎

The biogenic amine octopamine modulates diverse behaviors in invertebrates. At the single neuron level, the mode of action is well understood in the peripheral nervous system owing to its simple structure and accessibility. For elucidating the role of individual octopaminergic neurons in the modulation of complex behaviors, a detailed analysis of the connectivity in the central nervous system is required. Here we present a comprehensive anatomical map of candidate octopaminergic neurons in the adult Drosophila brain: including the supra- and subesophageal ganglia. Application of the Flp-out technique enabled visualization of 27 types of individual octopaminergic neurons. Based on their morphology and distribution of genetic markers, we found that most octopaminergic neurons project to multiple brain structures with a clear separation of dendritic and presynaptic regions. Whereas their major dendrites are confined to specific brain regions, each cell type targets different, yet defined, neuropils distributed throughout the central nervous system. This would allow them to constitute combinatorial modules assigned to the modulation of distinct neuronal processes. The map may provide an anatomical framework for the functional constitution of the octopaminergic system. It also serves as a model for the single-cell organization of a particular neurotransmitter in the brain.


A population of descending tyraminergic/octopaminergic projection neurons of the insect deutocerebrum.

  • Natalia L Kononenko‎ et al.
  • The Journal of comparative neurology‎
  • 2019‎

In this study, we describe a cluster of tyraminergic/octopaminergic neurons in the lateral dorsal deutocerebrum of desert locusts (Schistocerca gregaria) with descending axons to the abdominal ganglia. In the locust, these neurons synthesize octopamine from tyramine stress-dependently. Electrophysiological recordings in locusts reveal that they respond to mechanosensory touch stimuli delivered to various parts of the body including the antennae. A similar cluster of tyraminergic/octopaminergic neurons was also identified in the American cockroach (Periplaneta americana) and the pink winged stick insect (Sipyloidea sipylus). It is suggested that these neurons release octopamine in the ventral nerve cord ganglia and, most likely, convey information on arousal and/or stressful stimuli to neuronal circuits thus contributing to the many actions of octopamine in the central nervous system.


Organization of descending neurons in the brain of the desert locust.

  • Erich M Staudacher‎ et al.
  • The Journal of comparative neurology‎
  • 2023‎

In most animals, multiple external and internal signals are integrated by the brain, transformed and, finally, transmitted as commands to motor centers. In insects, the central complex is a motor control center in the brain, involved in decision-making and goal-directed navigation. In desert locusts, it encodes celestial cues in a compass-like fashion indicating a role in sky-compass navigation. While several descending brain neurons (DBNs) including two neurons transmitting sky compass signals have been identified in the locust, a complete analysis of DBNs and their relationship to the central complex is still lacking. As a basis for further studies, we used Neurobiotin tracer injections into a neck connective to map the organization of DBNs in the brain. Cell counts revealed a maximum of 324 bilateral pairs of DBNs with somata distributed in 14 ipsilateral and nine contralateral groups. These neurons invaded most brain neuropils, especially the posterior slope, posterior and ventro-lateral protocerebrum, the antennal mechanosensory and motor center, but less densely the lateral accessory lobes that are targeted by central-complex outputs. No arborizations were found in the central complex and only few processes in the mushroom body, antennal lobe, lobula, medulla, and superior protocerebrum. Double label experiments provide evidence for the presence of GABA, dopamine, tyramine, but not serotonin, in small sets of DBNs. The data show that some DBNs may be targeted directly by central-complex outputs, but many others are likely only indirectly influenced by central-complex networks, in addition to input from multiple other brain areas.


Characterization of the octopaminergic and tyraminergic neurons in the central brain of Drosophila larvae.

  • Mareike Selcho‎ et al.
  • The Journal of comparative neurology‎
  • 2014‎

Drosophila larvae are able to evaluate sensory information based on prior experience, similarly to adult flies, other insect species, and vertebrates. Larvae and adult flies can be taught to associate odor stimuli with sugar reward, and prior work has implicated both the octopaminergic and the dopaminergic modulatory systems in reinforcement signaling. Here we use genetics to analyze the anatomy, up to the single-cell level, of the octopaminergic/tyraminergic system in the larval brain and subesophageal ganglion. Genetic ablation of subsets of these neurons allowed us to determine their necessity for appetitive olfactory learning. These experiments reveal that a small subset of about 39 largely morphologically distinguishable octopaminergic/tyraminergic neurons is involved in signaling reward in the Drosophila larval brain. In addition to prior work on larval locomotion, these data functionally separate the octopaminergic/tyraminergic system into two sets of about 40 neurons. Those situated in the thoracic/abdominal ganglion are involved in larval locomotion, whereas the others in the subesophageal ganglion and brain hemispheres mediate reward signaling.


Intrinsic neurons of Drosophila mushroom bodies express short neuropeptide F: relations to extrinsic neurons expressing different neurotransmitters.

  • Helena A D Johard‎ et al.
  • The Journal of comparative neurology‎
  • 2008‎

Mushroom bodies constitute prominent paired neuropils in the brain of insects, known to be involved in higher olfactory processing and learning and memory. In Drosophila there are about 2,500 intrinsic mushroom body neurons, Kenyon cells, and a large number of different extrinsic neurons connecting the calyx, peduncle, and lobes to other portions of the brain. The neurotransmitter of the Kenyon cells has not been identified in any insect. Here we show expression of the gene snpf and its neuropeptide products (short neuropeptide F; sNPFs) in larval and adult Drosophila Kenyon cells by means of in situ hybridization and antisera against sequences of the precursor and two of the encoded peptides. Immunocytochemistry displays peptide in intrinsic neuronal processes in most parts of the mushroom body structures, except for a small core in the center of the peduncle and lobes and in the alpha'- and beta'-lobes. Weaker immunolabeling is seen in Kenyon cell bodies and processes in the calyx and initial peduncle and is strongest in the more distal portions of the lobes. We used different antisera and Gal4-driven green fluorescent protein to identify Kenyon cells and different populations of extrinsic neurons defined by their signal substances. Thus, we display neurotransmitter systems converging on Kenyon cells: neurons likely to utilize dopamine, tyramine/octopamine, glutamate, and acetylcholine. Attempts to identify other neurotransmitter components (including vesicular glutamate transporter) in Kenyon cells failed. However, it is likely that the Kenyon cells utilize an additional neurotransmitter, yet to be identified, and that the neuropeptides described here may represent cotransmitters.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: