Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Phosphorylation of Troponin I finely controls the positioning of Troponin for the optimal regulation of cardiac muscle contraction.

  • Ehsan Kachooei‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2021‎

Troponin is the Ca2+ molecular switch that regulates striated muscle contraction. In the heart, troponin Ca2+ sensitivity is also modulated by the PKA-dependent phosphorylation of a unique 31-residue N-terminal extension region of the Troponin I subunit (NH2-TnI). However, the detailed mechanism for the propagation of the phosphorylation signal through Tn, which results in the enhancement of the myocardial relaxation rate, is difficult to examine within whole Tn. Several models exist for how phosphorylation modulates the troponin response in cardiac cells but these are mostly built from peptide-NMR studies and molecular dynamics simulations. Here we used a paramagnetic spin labeling approach to position and track the movement of the NH2-TnI region within whole Tn. Through paramagnetic relaxation enhancement (PRE)-NMR experiments, we show that the NH2-TnI region interacts with a broad surface area on the N-domain of the Troponin C subunit. This region includes the Ca2+ regulatory Site II and the TnI switch-binding site. Phosphorylation of the NH2-TnI both weakens and shifts this region to an adjacent site on TnC. Interspin EPR distances between NH2-TnI and TnC further reveal a phosphorylation induced re-orientation of the TnC N-domain under saturating Ca2+ conditions. We propose an allosteric model where phosphorylation triggered cooperative changes in both the interaction of the NH2-TnI region with TnC, and the re-orientation of the TnC interdomain orientation, together promote the release of the TnI switch-peptide. Enhancement of the myocardial relaxation rate then occurs. Knowledge of this unique role of phosphorylation in whole Tn is important for understanding pathological processes affecting the heart.


Molecular insights from a novel cardiac troponin I mouse model of familial hypertrophic cardiomyopathy.

  • Tatiana Tsoutsman‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2006‎

Gene mutations in cardiac troponin I (cTnI) account for up to 5% of genotyped families with familial hypertrophic cardiomyopathy (FHC). Little is known about how cTnI mutations cause disease. Five lines of transgenic mice were generated which overexpress the human disease-causing cTnI gene mutation, Gly203Ser (designated cTnI-G203S), in a cardiac-specific manner. Mice were compared to transgenic mice that overexpress normal cTnI (cTnI-wt) and non-transgenic littermates (NTG). cTnI-G203S mice developed all the characteristic features of FHC by age 21 weeks. Left ventricular hypertrophy was observed on echocardiography (1.25+/-0.05 mm vs. 0.86+/-0.02 mm in cTnI-wt, P<0.01), associated with a significant 4-fold increase in RNA markers of hypertrophy, ANF and BNP. Myocyte hypertrophy, myofiber disarray and interstitial fibrosis were observed in cTnI-G203S mice. Expression of the cTnI-G203S mutation in neonatal cardiomyocytes resulted in a significant increase in myocyte volume, and reduced interactions with both troponins T and C. Ca2+ cycling was abnormal in adult cardiomyocytes extracted from cTnI-G203S mice, with a prolonged decay constant in Ca2+ transients and a reduced decay constant in response to caffeine treatment. Mice with the cTnI-G203S gene mutation develop all the phenotypic features of human FHC. The cTnI-G203S mutation disrupts interactions with partner proteins, and results in intracellular Ca2+ dysregulation early in life, suggesting a pathogenic role in development of FHC.


Cardiac troponin I mutations in Australian families with hypertrophic cardiomyopathy: clinical, genetic and functional consequences.

  • Alessandra Doolan‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2005‎

Hypertrophic cardiomyopathy (HCM) is an autosomal dominant disorder caused by mutations in sarcomeric proteins. Cardiac troponin I (cTnI) is a key switch molecule in the sarcomere. Mutations in cTnI have been identified in <1% of genotyped HCM families.


Troponin phosphorylation and regulatory function in human heart muscle: dephosphorylation of Ser23/24 on troponin I could account for the contractile defect in end-stage heart failure.

  • Andrew E Messer‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2007‎

We made quantitative measurements of phosphorylation in troponin isolated from 6 non-failing donor hearts and 6 explanted hearts with end-stage heart failure in SDS-PAGE gels using Pro-Q Diamond phosphoprotein stain. The troponin T phosphorylation level was the same in troponin from failing and non-failing heart (3.1 mol Pi/mol). However, troponin I phosphorylation was significantly lower in failing (0.37+/-0.18 mol Pi/mol) compared with non-failing heart troponin (2.25+/-0.36 mol Pi/mol). Levels of troponin I PKA-dependent phosphorylation, measured with a phosphoserine 23/24-specific antibody, were also significantly lower in failing heart troponin (0.19+/-0.06 mol Pi/mol) compared to non-failing troponin (1.14+/-0.09 mol Pi/mol). We calculate that there is phosphorylation in addition to serine 23/24 of 1.11+/-0.34 mol Pi/mol in non-failing reduced to 0.18+/-0.17 mol Pi/mol in failing heart troponin, attributed to phosphorylation on the PKC sites. To test for the functional role of troponin I phosphorylation, the native troponin I from either non-failing or failing heart troponin was exchanged for a recombinant (unphosphorylated) human cardiac troponin I. Thin filament Ca(2+)-regulatory function was studied with the quantitative in vitro motility assay: thin filaments containing the replaced troponin I resulted in a failing phenotype of a 17-26% reduced sliding speed and an increased Ca(2+)-sensitivity relative to non-failing troponin (EC(50) TnI-exchanged/non-failing=0.57, p<0.001). When exchanged with troponin I phosphorylated with PKA motility parameters reverted to a pattern indistinguishable from non-failing troponin (p=0.35-0.75). We suggest that changes in troponin function can account for the contractile abnormality in failing heart muscle and that the functional changes in troponin are due to reduced phosphorylation of troponin I at the PKA sites.


Site-specific acetyl-mimetic modification of cardiac troponin I modulates myofilament relaxation and calcium sensitivity.

  • Ying H Lin‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2020‎

Cardiac troponin I (cTnI) is an essential physiological and pathological regulator of cardiac relaxation. Significant to this regulation, the post-translational modification of cTnI through phosphorylation functions as a key mechanism to accelerate myofibril relaxation. Similar to phosphorylation, post-translational modification by acetylation alters amino acid charge and protein function. Recent studies have demonstrated that the acetylation of cardiac myofibril proteins accelerates relaxation and that cTnI is acetylated in the heart. These findings highlight the potential significance of myofilament acetylation; however, it is not known if site-specific acetylation of cTnI can lead to changes in myofilament, myofibril, and/or cellular mechanics. The objective of this study was to determine the effects of mimicking acetylation at a single site of cTnI (lysine-132; K132) on myofilament, myofibril, and cellular mechanics and elucidate its influence on molecular function.


Calcium sensitivity, force frequency relationship and cardiac troponin I: critical role of PKA and PKC phosphorylation sites.

  • Genaro A Ramirez-Correa‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2010‎

Transgenic models with pseudo phosphorylation mutants of troponin I, PKA sites at Ser 22 and 23 (cTnIDD(22,23) mice) or PKC sites at Ser 42 and 44 (cTnIAD(22,23)DD(42,44)) displayed differential force-frequency relationships and afterload relaxation delay in vivo. We hypothesized that cTnI PKA and PKC phosphomimics impact cardiac muscle rate-related developed twitch force and relaxation kinetics in opposite directions. cTnIDD(22,23) transgenic mice produce a force frequency relationship (FFR) equivalent to control NTG albeit at lower peak [Ca(2+)](i), while cTnIAD(22,23)DD(42,44) TG mice had a flat FFR with normal peak systolic [Ca(2+)](i), thus suggestive of diminished responsiveness to [Ca(2+)](i) at higher frequencies. Force-[Ca(2+)](i) hysteresis analysis revealed that cTnIDD(22,23) mice have a combined enhanced myofilament calcium peak response with an enhanced slope of force development and decline per unit of [Ca(2+)](i), whereas cTnIAD(22,23)DD(42,44) transgenic mice showed the opposite. The computational ECME model predicts that the TG lines may be distinct from each other due to different rate constants for association/dissociation of Ca(2+) at the regulatory site of cTnC. Our data indicate that cTnI phosphorylation at PKA sites plays a critical role in the FFR by increasing relative myofilament responsiveness, and results in a distinctive transition between activation and relaxation, as displayed by force-[Ca(2+)](i) hysteresis loops. These findings may have important implications for understanding the specific contribution of cTnI to beta-adrenergic inotropy and lusitropy and to adverse contractile effects of PKC activation, which is relevant during heart failure development.


Increased phosphorylation of tropomyosin, troponin I, and myosin light chain-2 after stretch in rabbit ventricular myocardium under physiological conditions.

  • Michelle M Monasky‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2010‎

After a change in muscle length, there is an immediate intrinsic response in the amount of developed force, followed by a slower response. Although it has been well documented that the slow force response is at least in part generated by modification of calcium handling, it is unclear whether regulation at the myofilament level occurs during the slow force response. We set out to investigate myofilament calcium sensitivity and phosphorylation status of myofilament proteins after a step-wise change in cardiac muscle length. Ultra-thin right ventricular intact trabeculae were isolated from New Zealand White rabbit hearts and iontophoretically loaded with the calcium indicator bis-fura-2. Twitch force-calcium relationships and steady-state force-[Ca(2+)](i) relationships were measured at various muscle lengths at 37 degrees C using potassium induced contractures. The EC(50) significantly decreased with increase in muscle length and maximal active force development significantly increased, while no significant change in the myofilament cooperativity coefficient was found. Phosphoprotein analysis Pro-Q diamond staining as well as phosphorylation-specific antibodies revealed increased phosphorylation of tropomyosin, troponin I, and myosin light chain-2 at longer muscle lengths. Specifically, TnI phosphorylation at Ser(22/23) was increased. Since the immediate response is seen virtually instantaneously and post-translational modifications are thought not to occur within such a very short timeframe, we hypothesize that these increases in phosphorylation occur during the slow response.


Solution structure of the regulatory domain of human cardiac troponin C in complex with the switch region of cardiac troponin I and W7: the basis of W7 as an inhibitor of cardiac muscle contraction.

  • Marta Oleszczuk‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2010‎

The solution structure of Ca(2+)-bound regulatory domain of cardiac troponin C (cNTnC) in complex with the switch region of troponin I (cTnI(147-163)) and the calmodulin antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfinamide (W7), has been determined by NMR spectroscopy. The structure reveals that the W7 naphthalene ring interacts with the terminal methyl groups of M47, M60, and M81 as well as aliphatic and aromatic side chains of several other residues in the hydrophobic pocket of cNTnC. The H3 ring proton of W7 also contacts the methyl groups of I148 and M153 of cTnI(147-163). The N-(6-aminohexyl) tail interacts primarily with the methyl groups of V64 and M81, which are located on the C- and D-helices of cNTnC. Compared to the structure of the cNTnC*Ca(2+)*W7 complex (Hoffman, R. M. B. and Sykes, B. D. (2009) Biochemistry 48, 5541-5552), the tail of W7 reorients slightly toward the surface of cNTnC while the ring remains in the hydrophobic pocket. The positively charged -NH(3)(+) group from the tail of W7 repels the positively charged R147 of cTnI(147-163). As a result, the N-terminus of the peptide moves away from cNTnC and the helical content of cTnI(147-163) is diminished, when compared to the structure of cNTnC*Ca(2+)*cTnI(147-163) (Li, M. X., Spyracopoulos, L., and Sykes B. D. (1999) Biochemistry 38, 8289-8298). Thus the ternary structure cNTnC*Ca(2+)*W7*cTnI(147-163) reported in this study offers an explanation for the approximately 13-fold affinity reduction of cTnI(147-163) for cNTnC*Ca(2+) in the presence of W7 and provides a structural basis for the inhibitory effect of W7 in cardiac muscle contraction. This generates molecular insight into structural features that are useful for the design of cTnC-specific Ca(2+)-desensitizing drugs.


Structures reveal details of small molecule binding to cardiac troponin.

  • Fangze Cai‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2016‎

In cardiac and skeletal muscle, the troponin complex turns muscle contraction on and off in a calcium-dependent manner. Many small molecules are known to bind to the troponin complex to modulate its calcium binding affinity, and this may be useful in a broad range of conditions in which striated muscle function is compromised, such as congestive heart failure. As a tool for developing drugs specific for the cardiac isoform of troponin, we have designed a chimeric construct (cChimera) consisting of the regulatory N-terminal domain of cardiac troponin C (cNTnC) fused to the switch region of cardiac troponin I (cTnI), mimicking the key binding event that turns on muscle contraction. We demonstrate by solution NMR spectroscopy that cChimera faithfully reproduces the native interface between cTnI and cNTnC. We determined that small molecules based on diphenylamine can bind to cChimera with a KD as low as 10μM. Solution NMR structures show that minimal structural perturbations in cChimera are needed to accommodate 3-methyldiphenylamine (3-mDPA), which is probably why it binds with higher affinity than previously studied compounds like bepridil, despite its significantly smaller size. The unsubstituted aromatic ring of 3-mDPA binds to an inner hydrophobic pocket adjacent to the central beta sheet of cNTnC. However, the methyl-substituted ring is able to bind in two different orientations, either inserting into the cNTnC-cTnI interface or "flipping out" to form contacts primarily with helix C of cNTnC. Our work suggests that preservation of the native interaction between cNTnC and cTnI is key to the development of a high affinity cardiac troponin-specific drug.


A non-equilibrium isoelectric focusing method to determine states of phosphorylation of cardiac troponin I: identification of Ser-23 and Ser-24 as significant sites of phosphorylation by protein kinase C.

  • Tomoyoshi Kobayashi‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2005‎

Phosphorylation of cardiac troponin I (cTnI) by cAMP-dependent kinase (PKA), protein kinase C (PKC) and potentially other kinases modulates the activity of myofilaments. To elucidate the signaling mechanisms involving this modulation, it is important to determine the phosphorylation states of cTnI and its phosphorylation sites in a simple and efficient manner. In this report, we describe a method to determine the phosphorylation states of cTnI with non-equilibrium isoelectric focusing gel electrophoresis (NEIEF). Our method easily separates cTnI species with a single-charge difference. To further establish a role of PKC-dependent phosphorylation of cTnI, we have applied this approach to analysis of cTnI phosphorylation in the Tn complex following treatment with recombinant PKC, and in heart samples treated with a phorbol ester. Using mass spectrometry analysis of Tn and thin filaments, we identified Ser-23 and Ser-24 (normally considered to be PKA-dependent sites) as substrates for phosphorylation by PKC-beta and PKC-epsilon.


Regulatory domain of troponin moves dynamically during activation of cardiac muscle.

  • Ivanka Sevrieva‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2014‎

Heart muscle is activated by Ca(2+) to generate force and shortening, and the signaling pathway involves allosteric mechanisms in the thin filament. Knowledge about the structure-function relationship among proteins in the thin filament is critical in understanding the physiology and pathology of the cardiac function, but remains obscure. We investigate the conformation of the cardiac troponin (Tn) on the thin filament and its response to Ca(2+) activation and propose a molecular mechanism for the regulation of cardiac muscle contraction by Tn based uniquely on information from in situ protein domain orientation. Polarized fluorescence from bifunctional rhodamine is used to determine the orientation of the major component of Tn core domain on the thin filaments of cardiac muscle. We show that the C-terminal lobe of TnC (CTnC) does not move during activation, suggesting that CTnC, together with the coiled coil formed by the TnI and TnT chains (IT arm), acts as a scaffold that holds N-terminal lobe of TnC (NTnC) and the actin binding regions of troponin I. The NTnC, on the other hand, exhibits multiple orientations during both diastole and systole. By combining the in situ orientation data with published in vitro measurements of intermolecular distances, we construct a model for the in situ structure of the thin filament. The conformational dynamics of NTnC plays an important role in the regulation of cardiac muscle contraction by moving the C-terminal region of TnI from its actin-binding inhibitory location and enhancing the movement of tropomyosin away from its inhibitory position.


The structural and functional effects of the familial hypertrophic cardiomyopathy-linked cardiac troponin C mutation, L29Q.

  • Ian M Robertson‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2015‎

Familial hypertrophic cardiomyopathy (FHC) is characterized by severe abnormal cardiac muscle growth. The traditional view of disease progression in FHC is that an increase in the Ca(2+)-sensitivity of cardiac muscle contraction ultimately leads to pathogenic myocardial remodeling, though recent studies suggest this may be an oversimplification. For example, FHC may be developed through altered signaling that prevents downstream regulation of contraction. The mutation L29Q, found in the Ca(2+)-binding regulatory protein in heart muscle, cardiac troponin C (cTnC), has been linked to cardiac hypertrophy. However, reports on the functional effects of this mutation are conflicting, and our goal was to combine in vitro and in situ structural and functional data to elucidate its mechanism of action. We used nuclear magnetic resonance and circular dichroism to solve the structure and characterize the backbone dynamics and stability of the regulatory domain of cTnC with the L29Q mutation. The overall structure and dynamics of cTnC were unperturbed, although a slight rearrangement of site 1, an increase in backbone flexibility, and a small decrease in protein stability were observed. The structure and function of cTnC was also assessed in demembranated ventricular trabeculae using fluorescence for in situ structure. L29Q reduced the cooperativity of the Ca(2+)-dependent structural change in cTnC in trabeculae under basal conditions and abolished the effect of force-generating myosin cross-bridges on this structural change. These effects could contribute to the pathogenesis of this mutation.


Cardiac-specific deletion of protein phosphatase 1β promotes increased myofilament protein phosphorylation and contractile alterations.

  • Ruijie Liu‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2015‎

There are 3 protein phosphatase 1 (PP1) catalytic isoforms (α, β and γ) encoded within the mammalian genome. These 3 gene products share ~90% amino acid homology within their catalytic domains but each has unique N- and C-termini that likely underlie distinctive subcellular localization or functionality. In this study, we assessed the effect associated with the loss of each PP1 isoform in the heart using a conditional Cre-loxP targeting approach in mice. Ppp1ca-loxP, Ppp1cb-loxP and Ppp1cc-loxP alleles were crossed with either an Nkx2.5-Cre knock-in containing allele for early embryonic deletion or a tamoxifen inducible α-myosin heavy chain (αMHC)-MerCreMer transgene for adult and cardiac-specific deletion. We determined that while deletion of Ppp1ca (PP1α) or Ppp1cc (PP1γ) had little effect on the whole heart, deletion of Ppp1cb (PP1β) resulted in concentric remodeling of the heart, interstitial fibrosis and contractile dysregulation, using either the embryonic or adult-specific Cre-expressing alleles. However, myocytes isolated from Ppp1cb deleted hearts surprisingly showed enhanced contractility. Mechanistically we found that deletion of any of the 3 PP1 gene-encoding isoforms had no effect on phosphorylation of phospholamban, nor were Ca(2+) handling dynamics altered in adult myocytes from Ppp1cb deleted hearts. However, the loss of Ppp1cb from the heart, but not Ppp1ca or Ppp1cc, resulted in elevated phosphorylation of myofilament proteins such as myosin light chain 2 and cardiac myosin binding protein C, consistent with an enriched localization profile of this isoform to the sarcomeres. These results suggest a unique functional role for the PP1β isoform in affecting cardiac contractile function.


Point mutations in the tri-helix bundle of the M-domain of cardiac myosin binding protein-C influence systolic duration and delay cardiac relaxation.

  • Sabine J van Dijk‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2018‎

Cardiac myosin binding protein-C (cMyBP-C) is an essential regulatory protein required for proper systolic contraction and diastolic relaxation. We previously showed that N'-terminal domains of cMyBP-C stimulate contraction by binding to actin and activating the thin filament in vitro. In principle, thin filament activating effects of cMyBP-C could influence contraction and relaxation rates, or augment force amplitude in vivo. cMyBP-C binding to actin could also contribute to an internal load that slows muscle shortening velocity as previously hypothesized. However, the functional significance of cMyBP-C binding to actin has not yet been established in vivo. We previously identified an actin binding site in the regulatory M-domain of cMyBP-C and described two missense mutations that either increased (L348P) or decreased (E330K) binding affinity of recombinant cMyBP-C N'-terminal domains for actin in vitro. Here we created transgenic mice with either the L348P or E330K mutations to determine the functional significance of cMyBP-C binding to actin in vivo. Results showed that enhanced binding of cMyBP-C to actin in L348P-Tg mice prolonged the time to end-systole and slowed relaxation rates. Reduced interactions between cMyBP-C and actin in E330K-Tg mice had the opposite effect and significantly shortened the duration of ejection. Neither mouse model displayed overt systolic dysfunction, but L348P-Tg mice showed diastolic dysfunction presumably resulting from delayed relaxation. We conclude that cMyBP-C binding to actin contributes to sustained thin filament activation at the end of systole and during isovolumetric relaxation. These results provide the first functional evidence that cMyBP-C interactions with actin influence cardiac function in vivo.


Stage-specific changes in myofilament protein phosphorylation following myocardial infarction in mice.

  • Lori A Walker‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2010‎

The response of cardiac muscle to an insult such as myocardial infarction includes changes in the expression of numerous signaling proteins and modulation of gene expression, as well as post-translational modifications of existing proteins. Most studies to date have defined these in end-stage cardiac muscle thus obviating consideration of the temporal progression that causes the heart to transition from a compensated to a decompensated phenotype. To explore these transitions, we examined contractile protein biochemistry in a mouse MI model at two early time points: 2 days and 2 weeks post-infarct and at two later time points: 2 and 4 months post-infarct. Phosphorylation of myofilament proteins was analyzed using phosphospecific staining of polyacrylamide gels, and whenever possible, phosphospecific antibodies. Phosphorylation of myosin binding protein c, the myosin regulatory light chain and troponin I were all decreased relative to sham operated animals at both early time points. However, by 2 months, total phosphorylation of all the major myofilament proteins normalized and at both 2 and 4 months, there was a significant increase in troponin I phosphorylation. One-dimensional IEF of troponin I coupled with phospho-specific antibody analysis demonstrated a redistribution of phosphorylation sites with a significant initial decline at the putative PKA sites, Serine 22,23, and a subsequent increase at the putative PKC site, serine 43,45. These data suggest that temporal changes in myofilament protein phosphorylation contribute both to the initial compensatory hyperdynamic response to myocardial infarction and subsequently to the gradual progression to myocardial failure.


Sarcomere integrated biosensor detects myofilament-activating ligands in real time during twitch contractions in live cardiac muscle.

  • Anthony D Vetter‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2020‎

The sarcomere is the functional unit of cardiac muscle, essential for normal heart function. To date, it has not been possible to study, in real time, thin filament-based activation dynamics in live cardiac muscle. We report here results from a cardiac troponin C (TnC) FRET-based biosensor integrated into the cardiac sarcomere via stoichiometric replacement of endogenous TnC. The TnC biosensor provides, for the first time, evidence of multiple thin filament activating ligands, including troponin I interfacing with TnC and cycling myosin, during a cardiac twitch. Results show that the TnC FRET biosensor transient significantly precedes that of peak twitch force. Using small molecules and genetic modifiers known to alter sarcomere activation, independently of the intracellular Ca2+ transient, the data show that the TnC biosensor detects significant effects of the troponin I switch domain as a sarcomere-activating ligand. Interestingly, the TnC biosensor also detected the effects of load-dependent altered myosin cycling, as shown by a significant delay in TnC biosensor transient inactivation during the isometric twitch. In addition, the TnC biosensor detected the effects of myosin as an activating ligand during the twitch by using a small molecule that directly alters cross-bridge cycling, independently of the intracellular Ca2+ transient. Collectively, these results aid in illuminating the basis of cardiac muscle contractile activation with implications for gene, protein, and small molecule-based strategies designed to target the sarcomere in regulating beat-to-beat heart performance in health and disease.


Probing the mechanism of cardiovascular drugs using a covalent levosimendan analog.

  • Sandra E Pineda-Sanabria‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2016‎

One approach to improve contraction in the failing heart is the administration of calcium (Ca(2+)) sensitizers. Although it is known that levosimendan and other sensitizers bind to troponin C (cTnC), their in vivo mechanism is not fully understood. Based on levosimendan, we designed a covalent Ca(2+) sensitizer (i9) that targets C84 of cTnC and exchanged this complex into cardiac muscle. The NMR structure of the covalent complex showed that i9 binds deep in the hydrophobic pocket of cTnC. Despite slightly reducing troponin I affinity, i9 enhanced the Ca(2+) sensitivity of cardiac muscle. We conclude that i9 enhances Ca(2+) sensitivity by stabilizing the open conformation of cTnC. These findings provide new insights into the in vivo mechanism of Ca(2+) sensitization and demonstrate that directly targeting cTnC has significant potential in cardiovascular therapy.


Mycophenolate mofetil prevents the development of experimental autoimmune myocarditis.

  • Yuichi Kamiyoshi‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2005‎

Experimental autoimmune myocarditis (EAM) is characterized by the appearance of multinucleated giant cells. EAM leads to severe myocardial damage and is a useful model of human giant cell myocarditis. We investigated whether mycophenolate mofetil (MMF), which is a potent immunosuppressant, prevents the development of myocarditis in a rat EAM model, and focused on the role of osteopontin (OPN) in the pathogenesis of this disorder. Adult Lewis rats were immunized with porcine cardiac myosin to establish EAM. The early MMF treatment completely prevented the development of EAM, and the late MMF treatment was also effective even against established EAM. Echocardiogram demonstrated that left ventricular function was also improved by the treatment with MMF. Real-time RT-PCR analysis showed that both early and late MMF treatments significantly inhibited myocarditis-induced OPN mRNA expression in the heart. Immunohistochemistry revealed that OPN expression was prominent in the myocardium on day 14, whereas expression was observed in the infiltrated macrophages on day 21. Mycophenolic acid (MPA) did inhibit agonist-induced OPN expression in cultured cardiomyocytes. These results show the therapeutic potential of MMF for autoimmune myocarditis and provide new insights into the pathogenesis of this disease.


Changes in myofibrillar protein composition of human diaphragm elicited by congestive heart failure.

  • B A Tikunov‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 1996‎

We describe the changes in proportions of myofibrillar proteins elicited by chronic congestive heart failure in the costal diaphragm (DIA) of humans using one and two-dimensional electrophoretic techniques. Three myosin heavy chain (MHC) isoforms were found in the DIA from control subjects: slow MHC I (43 +/- S.E. 2%), fast MHC IIa (41 +/- 2%) and fast MHC IIb (17 +/- 1%). In heart failure DIA, the percentage of MHC I was increased to 57 +/- 2%, while that of MHC IIb was decreased to 8 +/- 2 (P < 0.001 for both cases). Similarly, this DIA had higher molar ratios (%) of the slow myosin light chain isoforms (i.e. 1sa, 1sb, and 2s), and lower molar ratios of the fast isoforms (i.e. 1f, 2f, and 3f) than control DIA. Heart failure DIA also contained lower proportions of both alpha-tropomyosin and fast isoforms of troponin-T, I and C than control DIA. These results indicate that heart failure elicits fast-to-slow transformations of both myosin and regulatory proteins of human costal DIA. These changes can be viewed as an increase in slow-twitch characteristics of the DIA and differ from the adaptations elicited by heart failure in limb muscles.


Treatment with anti-RANKL antibody reduces infarct size and attenuates dysfunction impacting on neutrophil-mediated injury.

  • Federico Carbone‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2016‎

Selective pharmacological treatments targeting reperfusion injury produced modest protective effects and might be associated with immunosuppression. In order to identify novel and better-tolerated approaches, we focused on the neutralization of receptor activator of nuclear factor kappa-B ligand [RANKL], a cytokine recently shown to activate inflammatory cells (i.e. neutrophils) orchestrating post-infarction injury and repair. Myocardial ischemia (60min) and reperfusion injury was surgically induced in C57Bl/6 mice. In hearts and serum, RANKL was early upregulated during reperfusion. A "one-shot" injection with neutralizing anti-RANKL IgG during ischemia ameliorated myocardial infarct size and function, but not adverse remodeling (determined by Magnetic Resonance Imaging [MRI]) as compared to Vehicle or control IgG. These beneficial effects were accompanied in vivo by reduction in cardiac neutrophil infiltration, reactive oxygen species (ROS) and MMP-9 release. Anti-RANKL IgG treatment suppressed sudden peak of neutrophil granule products in mouse serum early after reperfusion onset. In vitro, RANK mRNA expression was detected in isolated mouse neutrophils. Co-incubation with neutralizing anti-RANKL IgG abrogated RANKL-induced mouse neutrophil degranulation and migration, suggesting a critical role of RANKL in neutrophil-mediated injury. Conversely, anti-RANKL IgG did not affect salvage pathways in cardiac cells (i.e. ERK p42/p44, Akt and STAT-3) or macrophage cardiac infiltration. Finally, treatment with anti-RANKL IgG showed no effect on B and T lymphocyte polarization (in serum, spleen and infarcted myocardium) and circulating chemokines as compared with Vehicle or control IgG. In conclusion, acute treatment with anti-RANKL IgG improved cardiac infarct size and function by potentially impacting on neutrophil-mediated injury and repair.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: