Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Preventing, treating, and predicting barbering: A fundamental role for biomarkers of oxidative stress in a mouse model of Trichotillomania.

  • Giovana de L T Vieira‎ et al.
  • PloS one‎
  • 2017‎

Barbering, where a "barber" mouse plucks hair from its cagemates or itself, is both a spontaneously occurring abnormal behavior in mice and a well validated model of Trichotillomania (TTM). N-Acetylcysteine, (NAC) a cysteine derived food additive, is remarkably effective in treating TTM patients, but its mechanism of action is unknown. Reactive Oxygen Species (ROS), also known as free radicals, form as a natural byproduct of the normal metabolism of oxygen. Under normal circumstances, cells are able to defend themselves against ROS damage with antioxidant pathways. NAC is the precursor to the main antioxidant produced to defend the brain. Therefore, we hypothesized that barbering is a disease of oxidative stress, whereby ROS and/or a failure of antioxidant defenses leads to neuronal damage that induces barbering in susceptible animals. We tested this hypothesis in 32 female C57BL/6J mice by treating half with 1g/kg BW/day of NAC in their diet, and testing for protection against developing barbering behavior and curing of barbering behavior, and simultaneously testing for a panel of biomarkers of oxidative stress. NAC reduced the chance that mice would be barbers, and this effect did not differ between healthy (i.e. prevention) and affected animals (i.e. cure). Barbering animals had elevated urinary antioxidant capacity, indicative of oxidative stress, at all timepoints. Additionally, after treatment the risk of barbering increased with decreasing hydroxy-2'-deoxyguanosine (8-OHdG) levels, and with increasing glutathione (GSH) and oxidized glutathione (GSSG) levels, further indicating that barbering mice were under oxidative stress regardless of treatment with NAC. We did not find compelling evidence that urinary total antioxidant capacity, or urinary 8-OHdG, could predict response to NAC treatment. We conclude that NAC is effective in preventing and/or curing barbering at least in part by promoting GSH synthesis, thereby preventing oxidative damage.


Antioxidant Therapies for Ulcerative Dermatitis: A Potential Model for Skin Picking Disorder.

  • Nneka M George‎ et al.
  • PloS one‎
  • 2015‎

Skin Picking Disorder affects 4% of the general population, with serious quality of life impacts, and potentially life threatening complications. Standard psychoactive medications do not help most patients. Similarly, Mouse Ulcerative Dermatitis (skin lesions caused by excessive abnormal grooming behavior) is very common in widely used inbred strains of mice, and represents a serious animal welfare issue and cause of mortality. Treatment options for Ulcerative Dermatitis are largely palliative and ineffective. We have proposed mouse Ulcerative Dermatitis as a model for human Skin Picking Disorder based on similar epidemiology, behavior, and its comorbidity and mechanistic overlap with hair pulling (trichotillomania). We predicted that mouse Ulcerative Dermatitis would be treated by N-Acetylcysteine, as this compound is highly effective in treating both Skin Picking Disorder and Trichotillomania. Furthermore, we hypothesized that N-Acetylcysteine's mode of action is as a precursor to the production of the endogenous antioxidant glutathione in the brain, and therefore intranasal glutathione would also treat Ulcerative Dermatitis. Accordingly, we show in a heterogenous prospective trial, the significant reduction in Ulcerative Dermatitis lesion severity in mice receiving either N-acetylcysteine (oral administration) or glutathione (intranasal). The majority of mice treated with N-acetylcysteine improved slowly throughout the course of the study. Roughly half of the mice treated with glutathione showed complete resolution of lesion within 2-4 weeks, while the remainder did not respond. These findings are the first to show that the use of N-acetylcysteine and Glutathione can be curative for mouse Ulcerative Dermatitis. These findings lend additional support for mouse Ulcerative Dermatitis as a model of Skin Picking Disorder and also support oxidative stress and glutathione synthesis as the mechanism of action for these compounds. As N-Acetylcysteine is poorly tolerated by many patients, intranasal glutathione warrants further study as potential therapy in Skin Picking, trichotillomania and other body-focused repetitive behavior disorders.


Characterization of SLITRK1 variation in obsessive-compulsive disorder.

  • Uzoezi Ozomaro‎ et al.
  • PloS one‎
  • 2013‎

Obsessive compulsive disorder (OCD) is a syndrome characterized by recurrent and intrusive thoughts and ritualistic behaviors or mental acts that a person feels compelled to perform. Twin studies, family studies, and segregation analyses provide compelling evidence that OCD has a strong genetic component. The SLITRK1 gene encodes a developmentally regulated stimulator of neurite outgrowth and previous studies have implicated rare variants in this gene in disorders in the OC spectrum, specifically Tourette syndrome (TS) and trichotillomania (TTM). The objective of the current study was to evaluate rare genetic variation in SLITRK1 in risk for OCD and to functionally characterize associated coding variants. We sequenced SLITRK1 coding exons in 381 individuals with OCD as well as in 356 control samples and identified three novel variants in seven individuals. We found that the combined mutation load in OCD relative to controls was significant (p = 0.036). We identified a missense N400I change in an individual with OCD, which was not found in more than 1000 control samples (P<0.05). In addition, we showed the the N400I variant failed to enhance neurite outgrowth in primary neuronal cultures, in contrast to wildtype SLITRK1, which enhanced neurite outgrowth in this assay. These important functional differences in the N400I variant, as compared to the wildtype SLITRK1 sequence, may contribute to OCD and OC spectrum symptoms. A synonymous L63L change identified in an individual with OCD and an additional missense change, T418S, was found in four individuals with OCD and in one individual without an OCD spectrum disorder. Examination of additional samples will help assess the role of rare SLITRK1 variation in OCD and in related psychiatric illness.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: