2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

HbxB Is a Key Regulator for Stress Response and β-Glucan Biogenesis in Aspergillus nidulans.

  • Sung-Hun Son‎ et al.
  • Microorganisms‎
  • 2021‎

Homeobox transcription factors are conserved in eukaryotes and act as multi-functional transcription factors in filamentous fungi. Previously, it was demonstrated that HbxB governs fungal development and spore viability in Aspergillus nidulans. Here, the role of HbxB in A. nidulans was further characterized. RNA-sequencing revealed that HbxB affects the transcriptomic levels of genes associated with trehalose biosynthesis and response to thermal, oxidative, and radiation stresses in asexual spores called conidia. A phenotypic analysis found that hbxB deletion mutant conidia were more sensitive to ultraviolet stress. The loss of hbxB increased the mRNA expression of genes associated with β-glucan degradation and decreased the amount of β-glucan in conidia. In addition, hbxB deletion affected the expression of the sterigmatocystin gene cluster and the amount of sterigmatocystin. Overall, these results indicated that HbxB is a key transcription factor regulating trehalose biosynthesis, stress tolerance, β-glucan degradation, and sterigmatocystin production in A. nidulans conidia.


The velvet Regulator VosA Governs Survival and Secondary Metabolism of Sexual Spores in Aspergillus nidulans.

  • Min-Ju Kim‎ et al.
  • Genes‎
  • 2020‎

The velvet regulator VosA plays a pivotal role in asexual sporulation in the model filamentous fungus Aspergillus nidulans. In the present study, we characterize the roles of VosA in sexual spores (ascospores) in A. nidulans. During ascospore maturation, the deletion of vosA causes a rapid decrease in spore viability. The absence of vosA also results in a lack of trehalose biogenesis and decreased tolerance of ascospores to thermal and oxidative stresses. RNA-seq-based genome-wide expression analysis demonstrated that the loss of vosA leads to elevated expression of sterigmatocystin (ST) biosynthetic genes and a slight increase in ST production in ascospores. Moreover, the deletion of vosA causes upregulation of additional gene clusters associated with the biosynthesis of other secondary metabolites, including asperthecin, microperfuranone, and monodictyphenone. On the other hand, the lack of vosA results in the downregulation of various genes involved in primary metabolism. In addition, vosA deletion alters mRNA levels of genes associated with the cell wall integrity and trehalose biosynthesis. Overall, these results demonstrate that the velvet regulator VosA plays a key role in the maturation and the cellular and metabolic integrity of sexual spores in A. nidulans.


The role, interaction and regulation of the velvet regulator VelB in Aspergillus nidulans.

  • Hee-Soo Park‎ et al.
  • PloS one‎
  • 2012‎

The multifunctional regulator VelB physically interacts with other velvet regulators and the resulting complexes govern development and secondary metabolism in the filamentous fungus Aspergillus nidulans. Here, we further characterize VelB's role in governing asexual development and conidiogenesis in A. nidulans. In asexual spore formation, velB deletion strains show reduced number of conidia, and decreased and delayed mRNA accumulation of the key asexual regulatory genes brlA, abaA, and vosA. Overexpression of velB induces a two-fold increase of asexual spore production compared to wild type. Furthermore, the velB deletion mutant exhibits increased conidial germination rates in the presence of glucose, and rapid germination of conidia in the absence of external carbon sources. In vivo immuno-pull-down analyses reveal that VelB primarily interacts with VosA in both asexual and sexual spores, and VelB and VosA play an inter-dependent role in spore viability, focal trehalose biogenesis and control of conidial germination. Genetic and in vitro studies reveal that AbaA positively regulates velB and vosA mRNA expression during sporogenesis, and directly binds to the promoters of velB and vosA. In summary, VelB acts as a positive regulator of asexual development and regulates spore maturation, focal trehalose biogenesis and germination by interacting with VosA in A. nidulans.


Unveiling the Functions of the VosA-VelB Target Gene vidD in Aspergillus nidulans.

  • Ye-Eun Son‎ et al.
  • Mycobiology‎
  • 2021‎

The velvet regulators VosA and VelB are primarily involved in spore maturation and dormancy. Previous studies found that the VosA-VelB hetero-complex coordinates certain target genes that are related to fungal differentiation and conidial maturation in Aspergillus nidulans. Here, we characterized the VosA/VelB-inhibited developmental gene vidD in A. nidulans. Phenotypic analyses demonstrated that the vidD deleted mutant exhibited defect fungal growth, a reduced number of conidia, and delayed formation of sexual fruiting bodies. The deletion of vidD decreased the amount of conidial trehalose, increased the sensitivity against heat stress, and reduced the conidial viability. Moreover, the absence of vidD resulted in increased production of sterigmatocystin. Together, these results show that VidD is required for proper fungal growth, development, and sterigmatocystin production in A. nidulans.


Characterizing the role of Zn cluster family transcription factor ZcfA in governing development in two Aspergillus species.

  • Ye-Eun Son‎ et al.
  • PloS one‎
  • 2020‎

Filamentous fungi reproduce asexually or sexually, and the processes of asexual and sexual development are tightly regulated by a variety of transcription factors. In this study, we characterized a Zn2Cys6 transcription factor in two Aspergillus species, A. nidulans (AN5859) and A. flavus (AFLA_046870). AN5859 encodes a Zn2Cys6 transcription factor, called ZcfA. In A. nidulans, ΔzcfA mutants exhibit decreased fungal growth, a reduction in cleistothecia production, and increased asexual reproduction. Overexpression of zcfA results in increased conidial production, suggesting that ZcfA is required for proper asexual and sexual development in A. nidulans. In conidia, deletion of zcfA causes decreased trehalose levels and decreased spore viability but increased thermal sensitivity. In A. flavus, the deletion of the zcfA homolog AFLA_046870 causes increased conidial production but decreased sclerotia production; these effects are similar to those of zcfA deletion in A. nidulans development. Overall, these results demonstrate that ZcfA is essential for maintaining a balance between asexual and sexual development and that some roles of ZcfA are conserved in Aspergillus spp.


Homeobox proteins are essential for fungal differentiation and secondary metabolism in Aspergillus nidulans.

  • Sung-Hun Son‎ et al.
  • Scientific reports‎
  • 2020‎

The homeobox domain-containing transcription factors play an important role in the growth, development, and secondary metabolism in fungi and other eukaryotes. In this study, we characterized the roles of the genes coding for homeobox-type proteins in the model organism Aspergillus nidulans. To examine their roles in A. nidulans, the deletion mutant strains for each gene coding for homeobox-type protein were generated, and their phenotypes were examined. Phenotypic analyses revealed that two homeobox proteins, HbxA and HbxB, were required for conidia production. Deletion of hbxA caused abnormal conidiophore production, decreased the number of conidia in both light and dark conditions, and decreased the size of cleistothecia structures. Overexpressing hbxA enhanced the production of asexual spores and formation of conidiophore under the liquid submerged conditions. The hbxB deletion mutant strains exhibited decreased asexual spore production but increased cleistothecia production. The absence of hbxB decreased the trehalose content in asexual spores and increased their sensitivity against thermal and oxidative stresses. The ΔhbxA strains produced more sterigmatocystin, which was decreased in the ΔhbxB strain. Overall, our results show that HbxA and HbxB play crucial roles in the differentiation and secondary metabolism of the fungus A. nidulans.


Velvet activated McrA plays a key role in cellular and metabolic development in Aspergillus nidulans.

  • Mi-Kyung Lee‎ et al.
  • Scientific reports‎
  • 2020‎

McrA is a key transcription factor that functions as a global repressor of fungal secondary metabolism in Aspergillus species. Here, we report that mcrA is one of the VosA-VelB target genes and McrA governs the cellular and metabolic development in Aspergillus nidulans. The deletion of mcrA resulted in a reduced number of conidia and decreased mRNA levels of brlA, the key asexual developmental activator. In addition, the absence of mcrA led to a loss of long-term viability of asexual spores (conidia), which is likely associated with the lack of conidial trehalose and increased β-(1,3)-glucan levels in conidia. In supporting its repressive role, the mcrA deletion mutant conidia contain more amounts of sterigmatocystin and an unknown metabolite than the wild type conidia. While overexpression of mcrA caused the fluffy-autolytic phenotype coupled with accelerated cell death, deletion of mcrA did not fully suppress the developmental defects caused by the lack of the regulator of G-protein signaling protein FlbA. On the contrary to the cellular development, sterigmatocystin production was restored in the ΔflbA ΔmcrA double mutant, and overexpression of mcrA completely blocked the production of sterigmatocystin. Overall, McrA plays a multiple role in governing growth, development, spore viability, and secondary metabolism in A. nidulans.


Genome Wide Analysis Reveals the Role of VadA in Stress Response, Germination, and Sterigmatocystin Production in Aspergillus nidulans Conidia.

  • Ye-Eun Son‎ et al.
  • Microorganisms‎
  • 2020‎

In the Aspergillus species, conidia are asexual spores that are infectious particles responsible for propagation. Conidia contain various mycotoxins that can have detrimental effects in humans. Previous study demonstrated that VadA is required for fungal development and spore viability in the model fungus Aspergillus nidulans. In the present study, vadA transcriptomic analysis revealed that VadA affects the mRNA expression of a variety of genes in A. nidulans conidia. The genes that were primarily affected in conidia were associated with trehalose biosynthesis, cell-wall integrity, stress response, and secondary metabolism. Genetic changes caused by deletion of vadA were related to phenotypes of the vadA deletion mutant conidia. The deletion of vadA resulted in increased conidial sensitivity against ultraviolet stress and induced germ tube formation in the presence and absence of glucose. In addition, most genes in the secondary metabolism gene clusters of sterigmatocystin, asperfuranone, monodictyphenone, and asperthecin were upregulated in the mutant conidia with vadA deletion. The deletion of vadA led to an increase in the amount of sterigmatocystin in the conidia, suggesting that VadA is essential for the repression of sterigmatocystin production in conidia. These results suggest that VadA coordinates conidia maturation, stress response, and secondary metabolism in A. nidulans conidia.


The role of VosA/VelB-activated developmental gene vadA in Aspergillus nidulans.

  • Hee-Soo Park‎ et al.
  • PloS one‎
  • 2017‎

The filamentous fungus Aspergillus nidulans primarily reproduces by forming asexual spores called conidia, the integrity of which is governed by the NF-κB type velvet regulators VosA and VelB. The VosA-VelB hetero-complex regulates the expression of spore-specific structural and regulatory genes during conidiogenesis. Here, we characterize one of the VosA/VelB-activated developmental genes, called vadA, the expression of which in conidia requires activity of both VosA and VelB. VadA (AN5709) is predicted to be a 532-amino acid length fungal-specific protein with a highly conserved domain of unknown function (DUF) at the N-terminus. This DUF was found to be conserved in many Ascomycota and some Glomeromycota species, suggesting a potential evolutionarily conserved function of this domain in fungi. Deletion studies of vadA indicate that VadA is required for proper downregulation of brlA, fksA, and rodA, and for proper expression of tpsA and orlA during sporogenesis. Moreover, vadA null mutant conidia exhibit decreased trehalose content, but increased β(1,3)-glucan levels, lower viability, and reduced tolerance to oxidative stress. We further demonstrate that the vadA null mutant shows increased production of the mycotoxin sterigmatocystin. In summary, VadA is a dual-function novel regulator that controls development and secondary metabolism, and participates in bridging differentiation and viability of newly formed conidia in A. nidulans.


Transcriptomic, Protein-DNA Interaction, and Metabolomic Studies of VosA, VelB, and WetA in Aspergillus nidulans Asexual Spores.

  • Ming-Yueh Wu‎ et al.
  • mBio‎
  • 2021‎

In filamentous fungi, asexual development involves cellular differentiation and metabolic remodeling leading to the formation of intact asexual spores. The development of asexual spores (conidia) in Aspergillus is precisely coordinated by multiple transcription factors (TFs), including VosA, VelB, and WetA. Notably, these three TFs are essential for the structural and metabolic integrity, i.e., proper maturation, of conidia in the model fungus Aspergillus nidulans To gain mechanistic insight into the complex regulatory and interdependent roles of these TFs in asexual sporogenesis, we carried out multi-omics studies on the transcriptome, protein-DNA interactions, and primary and secondary metabolism employing A. nidulans conidia. RNA sequencing and chromatin immunoprecipitation sequencing analyses have revealed that the three TFs directly or indirectly regulate the expression of genes associated with heterotrimeric G-protein signal transduction, mitogen-activated protein (MAP) kinases, spore wall formation and structural integrity, asexual development, and primary/secondary metabolism. In addition, metabolomics analyses of wild-type and individual mutant conidia indicate that these three TFs regulate a diverse array of primary metabolites, including those in the tricarboxylic acid (TCA) cycle, certain amino acids, and trehalose, and secondary metabolites such as sterigmatocystin, emericellamide, austinol, and dehydroaustinol. In summary, WetA, VosA, and VelB play interdependent, overlapping, and distinct roles in governing morphological development and primary/secondary metabolic remodeling in Aspergillus conidia, leading to the production of vital conidia suitable for fungal proliferation and dissemination.IMPORTANCE Filamentous fungi produce a vast number of asexual spores that act as efficient propagules. Due to their infectious and/or allergenic nature, fungal spores affect our daily life. Aspergillus species produce asexual spores called conidia; their formation involves morphological development and metabolic changes, and the associated regulatory systems are coordinated by multiple transcription factors (TFs). To understand the underlying global regulatory programs and cellular outcomes associated with conidium formation, genomic and metabolomic analyses were performed in the model fungus Aspergillus nidulans Our results show that the fungus-specific WetA/VosA/VelB TFs govern the coordination of morphological and chemical developments during sporogenesis. The results of this study provide insights into the interdependent, overlapping, or distinct genetic regulatory networks necessary to produce intact asexual spores. The findings are relevant for other Aspergillus species such as the major human pathogen Aspergillus fumigatus and the aflatoxin producer Aspergillus flavus.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: