2024MAY03: Our hosting provider has resolved some DB connectivity issues. We may experience some more outages as the issue is resolved. We apologize for the inconvenience. Dismiss and don't show again

Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Characterization and expression patterns of a membrane-bound trehalase from Spodoptera exigua.

  • Bin Tang‎ et al.
  • BMC molecular biology‎
  • 2008‎

The chitin biosynthesis pathway starts with trehalose in insects and the main functions of trehalases are hydrolysis of trehalose to glucose. Although insects possess two types, soluble trehalase (Tre-1) and membrane-bound trehalase (Tre-2), very little is known about Tre-2 and the difference in function between Tre-1 and Tre-2.


Different functions of the insect soluble and membrane-bound trehalase genes in chitin biosynthesis revealed by RNA interference.

  • Jie Chen‎ et al.
  • PloS one‎
  • 2010‎

Trehalase, an enzyme that hydrolyzes trehalose to yield two glucose molecules, plays a pivotal role in various physiological processes. In recent years, trehalase proteins have been purified from several insect species and are divided into soluble (Tre-1) and membrane-bound (Tre-2) trehalases. However, no functions of the two trehalases in chitin biosynthesis in insects have yet been reported.


Functional characterization of three trehalase genes regulating the chitin metabolism pathway in rice brown planthopper using RNA interference.

  • Lina Zhao‎ et al.
  • Scientific reports‎
  • 2016‎

RNA interference (RNAi) is an effective gene-silencing tool, and double stranded RNA (dsRNA) is considered a powerful strategy for gene function studies in insects. In the present study, we aimed to investigate the function of trehalase (TRE) genes (TRE 1-1, TRE 1-2, and TRE-2) isolated from the brown planthopper Nilaparvata lugens, a typical piercing-sucking insect in rice, and investigate their regulating roles in chitin synthesis by injecting larvae with dsRNA. The results showed that TRE1 and TRE2 had compensatory function, and the expression of each increased when the other was silenced. The total rate of insects with phenotypic deformities ranged from 19.83 to 24.36% after dsTRE injection, whereas the mortality rate ranged from 14.16 to 31.78%. The mRNA levels of genes involved in the chitin metabolism pathway in RNA-Seq and DGEP, namely hexokinase (HK), glucose-6-phosphate isomerase (G6PI) and chitinase (Cht), decreased significantly at 72 h after single dsTREs injection, whereas two transcripts of chitin synthase (CHS) genes decreased at 72 h after dsTRE1-1 and dsTREs injection. These results demonstrated that TRE silencing could affect the regulation of chitin biosynthesis and degradation, causing moulting deformities. Therefore, expression inhibitors of TREs might be effective tools for the control of planthoppers in rice.


Evaluation of the Expression and Function of the TRE2-like and TRE2 Genes in Ecdysis of Harmonia axyridis.

  • Yan Li‎ et al.
  • Frontiers in physiology‎
  • 2019‎

Harmonia axyridis is an important predatory insect and widely used in biological control of agricultural and forestry pests. Trehalose is directly involved in the energy storage of the H. axyridis and in the oxidative function of various physiological activities thereby providing an energy source for its growth and development. The aim of this study was to explore the potential function of membrane-bound-like trehalase (TRE2-like) and membrane-bound trehalase (TRE2) genes in H. axyridis by RNAi. In addition, the activity of soluble and membrane-bound trehalase and the expression of genes related to trehalose and glycogen metabolism were determined in the larvae injected with dsTRE2-like or dsTRE2. The results showed that wing abnormality and mortality appeared in adults, as well as the activity of soluble trehalase and glycogen contents increased when interfering with TRE2-like gene. However, the activity of membrane-bound trehalase, trehalose and glucose contents in the larvae decreased. The expression of glycogen synthase (GS) and glycogen phosphorylase (GP) genes were decreased after RNAi in the ecdysis stage. The expression of chitin synthase gene A (CHSA), chitin synthase gene B (CHSB), and trehalose-6-phosphate synthase genes (TPS) were decreased significantly after RNAi, especially in the ecdysis stage. These results indicated that RNA interference is capable of knocking down gene expression of TRE2-like and TRE2, thereby disrupting trehalose metabolism which affects the chitin synthesis pathway in turn and also leads to developmental defects, such as wing deformities. This study could provide some theoretical guidance for the function of TRE2 gene in other insects.


Role of phosphoglucomutase in regulating trehalose metabolism in Nilaparvata lugens.

  • Bi-Ying Pan‎ et al.
  • 3 Biotech‎
  • 2020‎

Phosphoglucomutase (PGM) is a key enzyme in glycolysis and gluconeogenesis, regulating both glycogen and trehalose metabolism in insects. In this study, we explored the potential function of phosphoglucomutase (PGM) using RNA interference technology in Nilaparvata lugens, the brown planthopper. PGM1 and PGM2 were found highly expressed in the midgut of brown planthoppers, with different expression levels in different instar nymphs. The glycogen, glucose, and trehalose levels were also significantly increased after brown planthoppers were injected with dsRNA targeting PGM1 (dsPGM1) or PGM2 (dsPGM2). In addition, injection of dsPGM1 or dsPGM2 resulted in increased membrane-bound trehalase activity but not soluble trehalase activity. Furthermore, the expression of genes related to trehalose and glycogen metabolism decreased significantly after injection with dsPGM1 and dsPGM2. The expression levels of genes involved in chitin metabolism in the brown planthopper were also significantly decreased and the insects showed wing deformities and difficulty molting following RNAi. We suggest that silencing of PGM1 and PGM2 expression directly inhibits trehalose metabolism, leading to impaired chitin synthesis.


Study on the Effect of Wing Bud Chitin Metabolism and Its Developmental Network Genes in the Brown Planthopper, Nilaparvata lugens, by Knockdown of TRE Gene.

  • Lu Zhang‎ et al.
  • Frontiers in physiology‎
  • 2017‎

The brown planthopper, Nilaparvata lugens is one of the most serious pests of rice, and there is so far no effective way to manage this pest. However, RNA interference not only can be used to study gene function, but also provide potential opportunities for novel pest management. The development of wing plays a key role in insect physiological activities and mainly involves chitin. Hence, the regulating role of trehalase (TRE) genes on wing bud formation has been studied by RNAi. In this paper, the activity levels of TRE and the contents of the two sugars trehalose and glucose were negatively correlated indicating the potential role of TRE in the molting process. In addition, NlTRE1-1 and NlTRE2 were expressed at higher levels in wing bud tissue than in other tissues, and abnormal molting and wing deformity or curling were noted 48 h after the insect was injected with any double-stranded TRE (dsTRE), even though different TREs have compensatory functions. The expression levels of NlCHS1b, NlCht1, NlCht2, NlCht6, NlCht7, NlCht8, NlCht10, NlIDGF, and NlENGase decreased significantly 48 h after the insect was injected with a mixture of three kinds of dsTREs. Similarly, the TRE inhibitor validamycin can inhibit NlCHS1 and NlCht gene expression. However, the wing deformity was the result of the NlIDGF, NlENGase, NlAP, and NlTSH genes being inhibited when a single dsTRE was injected. These results demonstrate that silencing of TRE gene expression can lead to wing deformities due to the down-regulation of the AP and TSH genes involved in wing development and that the TRE inhibitor validamycin can co-regulate chitin metabolism and the expression of wing development-related genes in wing bud tissue. The results provide a new approach for the prevention and management of N. lugens.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: