Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Clonal tracking of erythropoiesis in rhesus macaques.

  • Xing Fan‎ et al.
  • Haematologica‎
  • 2020‎

The classical model of hematopoietic hierarchies is being reconsidered on the basis of data from in vitro assays and single cell expression profiling. Recent experiments suggested that the erythroid lineage might differentiate directly from multipotent hematopoietic stem cells / progenitors or from a highly biased subpopulation of stem cells, rather than transiting through common myeloid progenitors or megakaryocyte-erythrocyte progenitors. We genetically barcoded autologous rhesus macaque stem and progenitor cells, allowing quantitative tracking of the in vivo clonal output of thousands of individual cells over time following transplantation. CD34+ cells were lentiviral-transduced with a high diversity barcode library, with the barcode in an expressed region of the provirus, allowing barcode retrieval from DNA or RNA, with each barcode representing an individual stem or progenitor cell clone. Barcode profiles from bone marrow CD45-CD71+ maturing nucleated red blood cells were compared with other lineages purified from the same bone marrow sample. There was very high correlation of barcode contributions between marrow nucleated red blood cells and other lineages, with the highest correlation between nucleated red blood cells and myeloid lineages, whether at earlier or later time points post transplantation, without obvious clonal contributions from highly erythroid-biased or restricted clones. A similar profile occurred even under stressors such as aging or erythropoietin stimulation. RNA barcode analysis on circulating mature red blood cells followed over long time periods demonstrated stable erythroid clonal contributions. Overall, in this nonhuman primate model with great relevance to human hematopoiesis, we documented continuous production of erythroid cells from multipotent, non-biased hematopoietic stem cell clones at steady-state or under stress.


Comparative engraftment and clonality of macaque HSPCs expanded on human umbilical vein endothelial cells versus non-expanded cells.

  • Sandeep K Srivastava‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2021‎

Ex vivo hematopoietic stem and progenitor cell (HSPC) expansion platforms are under active development, designed to increase HSPC numbers and thus engraftment ability of allogeneic cord blood grafts or autologous HSPCs for gene therapies. Murine and in vitro models have not correlated well with clinical outcomes of HSPC expansion, emphasizing the need for relevant pre-clinical models. Our rhesus macaque HSPC competitive autologous transplantation model utilizing genetically barcoded HSPC allows direct analysis of the relative short and long-term engraftment ability of lentivirally transduced HSPCs, along with additional critical characteristics such as HSPC clonal diversity and lineage bias. We investigated the impact of ex vivo expansion of macaque HSPCs on the engineered endothelial cell line (E-HUVECs) platform regarding safety, engraftment of transduced and E-HUVEC-expanded HSPC over time compared to non-expanded HSPC for up to 51 months post-transplantation, and both clonal diversity and lineage distribution of output from each engrafted cell source. Short and long-term engraftment were comparable for E-HUVEC expanded and the non-expanded HSPCs in both animals, despite extensive proliferation of CD34+ cells during 8 days of ex vivo culture for the E-HUVEC HSPCs, and optimization of harvesting and infusion of HSPCs co-cultured on E-HUVEC in the second animal. Long-term hematopoietic output from both E-HUVEC expanded and unexpanded HSPCs was highly polyclonal and multilineage. Overall, the comparable HSPC kinetics of macaques to humans, the ability to study post-transplant clonal patterns, and simultaneous multi-arm comparisons of grafts without the complication of interpreting allogeneic effects makes our model ideal to test ex vivo HSPC expansion platforms, particularly for gene therapy applications.


Geographic clonal tracking in macaques provides insights into HSPC migration and differentiation.

  • Chuanfeng Wu‎ et al.
  • The Journal of experimental medicine‎
  • 2018‎

The geographic distribution of hematopoiesis at a clonal level is of interest in understanding how hematopoietic stem and progenitor cells (HSPCs) and their progeny interact with bone marrow (BM) niches during regeneration. We tagged rhesus macaque autologous HSPCs with genetic barcodes, allowing clonal tracking over time and space after transplantation. We found marked geographic segregation of CD34+ HSPCs for at least 6 mo posttransplantation, followed by very gradual clonal mixing at different BM sites over subsequent months to years. Clonal mapping was used to document local production of granulocytes, monocytes, B cells, and CD56+ natural killer (NK) cells. In contrast, CD16+CD56- NK cells were not produced in the BM, and in fact were clonally distinct from multipotent progenitors producing all other lineages. Most surprisingly, we documented local BM production of CD3+ T cells early after transplantation, using both clonal mapping and intravascular versus tissue-resident T cell staining, suggesting a thymus-independent T cell developmental pathway operating during BM regeneration, perhaps before thymic recovery.


Genetic Inactivation of CD33 in Hematopoietic Stem Cells to Enable CAR T Cell Immunotherapy for Acute Myeloid Leukemia.

  • Miriam Y Kim‎ et al.
  • Cell‎
  • 2018‎

The absence of cancer-restricted surface markers is a major impediment to antigen-specific immunotherapy using chimeric antigen receptor (CAR) T cells. For example, targeting the canonical myeloid marker CD33 in acute myeloid leukemia (AML) results in toxicity from destruction of normal myeloid cells. We hypothesized that a leukemia-specific antigen could be created by deleting CD33 from normal hematopoietic stem and progenitor cells (HSPCs), thereby generating a hematopoietic system resistant to CD33-targeted therapy and enabling specific targeting of AML with CAR T cells. We generated CD33-deficient human HSPCs and demonstrated normal engraftment and differentiation in immunodeficient mice. Autologous CD33 KO HSPC transplantation in rhesus macaques demonstrated long-term multilineage engraftment of gene-edited cells with normal myeloid function. CD33-deficient cells were impervious to CD33-targeting CAR T cells, allowing for efficient elimination of leukemia without myelotoxicity. These studies illuminate a novel approach to antigen-specific immunotherapy by genetically engineering the host to avoid on-target, off-tumor toxicity.


Impact of CMV Infection on Natural Killer Cell Clonal Repertoire in CMV-Naïve Rhesus Macaques.

  • Lauren L Truitt‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Recent functional, gene expression, and epigenetic studies have suggested the presence of a subset of mature natural killer (NK) cells responsible for maintaining NK cell memory. The lack of endogenous clonal markers in NK cells impedes understanding the genesis of these cell populations. In humans, primates, and mice, this phenotype and memory or adaptive functions have been strongly linked to cytomegalovirus or related herpes virus infections. We have used transplantation of lentivirally-barcoded autologous hematopoietic stem and progenitor cells (HSPC) to track clonal hematopoiesis in rhesus macaques and previously reported striking oligoclonal expansions of NK-biased barcoded clones within the CD56-CD16+ NK cell subpopulation, clonally distinct from ongoing output of myeloid, B cell, T cell, and CD56+16- NK cells from HSPC. These CD56-CD16+ NK cell clones segregate by expression of specific KIR surface receptors, suggesting clonal expansion in reaction to specific environmental stimuli. We have now used this model to investigate the impact of rhesus CMV(RhCMV) infection on NK clonal dynamics. Following transplantation, RhCMVneg rhesus macaques display less dominant and oligoclonal CD16+ NK cells biased clones compared to RhCMVpos animals, however these populations of cells are still clearly present. Upon RhCMV infection, CD16+ NK cells proliferate, followed by appearance of new groups of expanded NK clones and disappearance of clones present prior to RhCMV infection. A second superinfection with RhCMV resulted in rapid viral clearance without major change in the mature NK cell clonal landscape. Our findings suggest that RhCMV is not the sole driver of clonal expansion and peripheral maintenance of mature NK cells; however, infection of macaques with this herpesvirus does result in selective expansion and persistence of specific NK cell clones, providing further information relevant to adaptive NK cells and the development of NK cell therapies.


Barcoding of Macaque Hematopoietic Stem and Progenitor Cells: A Robust Platform to Assess Vector Genotoxicity.

  • Idalia M Yabe‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2018‎

Gene therapies using integrating retrovirus vectors to modify hematopoietic stem and progenitor cells have shown great promise for the treatment of immune system and hematologic diseases. However, activation of proto-oncogenes via insertional mutagenesis has resulted in the development of leukemia. We have utilized cellular bar coding to investigate the impact of different vector designs on the clonal behavior of hematopoietic stem and progenitor cells (HSPCs) during in vivo expansion, as a quantitative surrogate assay for genotoxicity in a non-human primate model with high relevance for human biology. We transplanted two rhesus macaques with autologous CD34+ HSPCs transduced with three lentiviral vectors containing different promoters and/or enhancers of a predicted range of genotoxicities, each containing a high-diversity barcode library that uniquely tags each individual transduced HSPC. Analysis of clonal output from thousands of individual HSPCs transduced with these barcoded vectors revealed sustained clonal diversity, with no progressive dominance of clones containing any of the three vectors for up to almost 3 years post-transplantation. Our data support a low genotoxic risk for lentivirus vectors in HSPCs, even those containing strong promoters and/or enhancers. Additionally, this flexible system can be used for the testing of future vector designs.


Barcode clonal tracking of tissue-resident immune cells in rhesus macaque highlights distinct clonal distribution pattern of tissue NK cells.

  • Chuanfeng Wu‎ et al.
  • Frontiers in immunology‎
  • 2022‎

Tissue resident (TR) immune cells play important roles in facilitating tissue homeostasis, coordinating immune responses against infections and tumors, and maintaining immunological memory. While studies have shown these cells are distinct phenotypically and functionally from cells found in the peripheral blood (PB), the clonal relationship between these populations across tissues has not been comprehensively studied in primates or humans. We utilized autologous transplantation of rhesus macaque hematopoietic stem and progenitor cells containing high diversity barcodes to track the clonal distribution of T, B, myeloid and natural killer (NK) cell populations across tissues, including liver, spleen, lung, and gastrointestinal (GI) tract, in comparison with PB longitudinally post-transplantation, in particular we focused on NK cells which do not contain endogenous clonal markers and have not been previously studied in this context. T cells demonstrated tissue-specific clonal expansions as expected, both overlapping and distinct from blood T cells. In contrast, B and myeloid cells showed a much more homogeneous clonal pattern across various tissues and the blood. The clonal distribution of TR NK was more heterogenous between individual animals. In some animals, as we have previously reported, we observed large PB clonal expansions in mature CD56-CD16+ NK cells. Notably, we found a separate set of highly expanded PB clones in CD16-CD56- (DN) NK subset that were also contributing to TR NK cells in all tissues examined, both in TR CD56-CD16+ and DN populations but absent in CD56+16- TR NK across all tissues analyzed. Additionally, we observed sets of TR NK clones specific to individual tissues such as lung or GI tract and sets of TR NK clones shared across liver and spleen, distinct from other tissues. Combined with prior functional data that suggests NK memory is restricted to liver or other TR NK cells, these clonally expanded TR NK cells may be of interest for future investigation into NK cell tissue immunological memory, with implications for development of NK based immunotherapies and an understanding of NK memory.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: