Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Transcription factor GATA4 drives RNA polymerase III-directed transcription and transformed cell proliferation through a filamin A/GATA4/SP1 pathway.

  • Cheng Zhang‎ et al.
  • The Journal of biological chemistry‎
  • 2022‎

RNA polymerase III (pol III) products play fundamental roles in a variety of cellular processes, including protein synthesis and cancer cell proliferation. In addition, dysregulation of pol III-directed transcription closely correlates with tumorigenesis. It is therefore of interest to identify novel pathways or factors governing pol III-directed transcription. Here, we show that transcription factor (TF) GATA binding protein 4 (GATA4) expression in SaOS2 cells was stimulated by the silencing of filamin A (FLNA), a repressor of pol III-directed transcription, suggesting that GATA4 is potentially associated with the regulation of pol III-directed transcription. Indeed, we show that GATA4 expression positively correlates with pol III-mediated transcription and tumor cell proliferation. Mechanistically, we found that GATA4 depletion inhibits the occupancies of the pol III transcription machinery factors at the loci of pol III target genes by reducing expression of both TFIIIB subunit TFIIB-related factor 1 and TFIIIC subunit general transcription factor 3C subunit 2 (GTF3C2). GATA4 has been shown to activate specificity factor 1 (Sp1) gene transcription by binding to the Sp1 gene promoter, and Sp1 has been confirmed to activate pol III gene transcription by directly binding to both Brf1 and Gtf3c2 gene promoters. Thus, the findings from this study suggest that GATA4 links FLNA and Sp1 signaling to form an FLNA/GATA4/Sp1 axis to modulate pol III-directed transcription and transformed cell proliferation. Taken together, these results provide novel insights into the regulatory mechanism of pol III-directed transcription.


Mitotic regulation of ribosomal S6 kinase 1 involves Ser/Thr, Pro phosphorylation of consensus and non-consensus sites by Cdc2.

  • O Jameel Shah‎ et al.
  • The Journal of biological chemistry‎
  • 2003‎

During mitosis, the cyclin-dependent kinase, Cdc2, signals the inactivation of major anabolic processes such as transcription, mRNA processing, translation, and ribosome biogenesis, thereby providing energy needed for the radical and energetically costly structural reorganization of the cell. This is accomplished by phosphorylation and inactivation of several key anabolic elements, including TFIIIB, TFIID, RNA polymerase II, poly(A) polymerase, and translation elongation factor 1gamma. We report here that ribosomal S6 kinase 1 (S6K1), a protein kinase linked to the translation of ribosomal protein mRNAs, is also subject to regulation by Cdc2 in mitosis. In mitotic HeLa cells, when the activity of Cdc2 is high, S6K1 is phosphorylated at multiple Ser/Thr, Pro (S/TP) sites, including Ser(371), Ser(411), Thr(421), and Ser(424). Concomitant with this, the phosphorylation of the hydrophobic motif site, Thr(389), is reduced resulting in a decrease in the specific activity of S6K1. The mitotic S/TP phosphorylation sites are readily phosphorylated by Cdc2.cyclin B in vitro. These proline-directed phosphorylations are sensitive to chemical inhibitors of Cdc2 but not to inhibitors of mammalian target of rapamycin, phosphatidylinositol 3-kinase, MEK1/2, or p38. In murine FT210 cells arrested in mitosis, conditional inactivation of Cdc2 reduces phosphorylation of S6K1 at S/TP sites while simultaneously increasing phosphorylation of Thr(389) and of the S6K1 substrate, RPS6. A physical interaction exists between Cdc2 and S6K1, and this interaction is enhanced in mitotic cells. These results suggest that Cdc2 provides a signal that triggers inactivation of S6K1 in mitosis, presumably serving to spare energy for costly mitotic processes at the expense of ribosomal protein synthesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: