Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 66 papers

A human adipose tissue cell-type transcriptome atlas.

  • Marthe Norreen-Thorsen‎ et al.
  • Cell reports‎
  • 2022‎

The importance of defining cell-type-specific genes is well acknowledged. Technological advances facilitate high-resolution sequencing of single cells, but practical challenges remain. Adipose tissue is composed primarily of adipocytes, large buoyant cells requiring extensive, artefact-generating processing for separation and analysis. Thus, adipocyte data are frequently absent from single-cell RNA sequencing (scRNA-seq) datasets, despite being the primary functional cell type. Here, we decipher cell-type-enriched transcriptomes from unfractionated human adipose tissue RNA-seq data. We profile all major constituent cell types, using 527 visceral adipose tissue (VAT) or 646 subcutaneous adipose tissue (SAT) samples, identifying over 2,300 cell-type-enriched transcripts. Sex-subset analysis uncovers a panel of male-only cell-type-enriched genes. By resolving expression profiles of genes differentially expressed between SAT and VAT, we identify mesothelial cells as the primary driver of this variation. This study provides an accessible method to profile cell-type-enriched transcriptomes using bulk RNA-seq, generating a roadmap for adipose tissue biology.


Integrative transcriptomic analysis of tissue-specific metabolic crosstalk after myocardial infarction.

  • Muhammad Arif‎ et al.
  • eLife‎
  • 2021‎

Myocardial infarction (MI) promotes a range of systemic effects, many of which are unknown. Here, we investigated the alterations associated with MI progression in heart and other metabolically active tissues (liver, skeletal muscle, and adipose) in a mouse model of MI (induced by ligating the left ascending coronary artery) and sham-operated mice. We performed a genome-wide transcriptomic analysis on tissue samples obtained 6- and 24 hr post MI or sham operation. By generating tissue-specific biological networks, we observed: (1) dysregulation in multiple biological processes (including immune system, mitochondrial dysfunction, fatty-acid beta-oxidation, and RNA and protein processing) across multiple tissues post MI and (2) tissue-specific dysregulation in biological processes in liver and heart post MI. Finally, we validated our findings in two independent MI cohorts. Overall, our integrative analysis highlighted both common and specific biological responses to MI across a range of metabolically active tissues.


Exploring autoantibody signatures in brain tissue from patients with severe mental illness.

  • David Just‎ et al.
  • Translational psychiatry‎
  • 2020‎

In recent years, studies have shown higher prevalence of autoantibodies in patients with schizophrenia compared to healthy individuals. This study applies an untargeted and a targeted affinity proteomics approach to explore and characterize the autoantibody repertoire in brain tissues from 73 subjects diagnosed with schizophrenia and 52 control subjects with no psychiatric or neurological disorders. Selected brain tissue lysates were first explored for IgG reactivity on planar microarrays composed of 11,520 protein fragments representing 10,820 unique proteins. Based on these results of ours and other previous studies of autoantibodies related to psychosis, we selected 226 fragments with an average length of 80 amino acids, representing 127 unique proteins. Tissue-based analysis of IgG reactivities using antigen suspension bead arrays was performed in a multiplex and parallel fashion for all 125 subjects. Among the detected autoantigens, higher IgG reactivity in subjects with schizophrenia, as compared to psychiatrically healthy subjects, was found against the glutamate ionotropic receptor NMDA type subunit 2D (anti-GluN2D). In a separate cohort with serum samples from 395 young adults with a wider spectrum of psychiatric disorders, higher levels of serum autoantibodies targeting GluN2D were found when compared to 102 control individuals. By further validating GluN2D and additional potential autoantigens, we will seek insights into how these are associated with severe mental illnesses.


A tool to facilitate clinical biomarker studies--a tissue dictionary based on the Human Protein Atlas.

  • Caroline Kampf‎ et al.
  • BMC medicine‎
  • 2012‎

The complexity of tissue and the alterations that distinguish normal from cancer remain a challenge for translating results from tumor biological studies into clinical medicine. This has generated an unmet need to exploit the findings from studies based on cell lines and model organisms to develop, validate and clinically apply novel diagnostic, prognostic and treatment predictive markers. As one step to meet this challenge, the Human Protein Atlas project has been set up to produce antibodies towards human protein targets corresponding to all human protein coding genes and to map protein expression in normal human tissues, cancer and cells. Here, we present a dictionary based on microscopy images created as an amendment to the Human Protein Atlas. The aim of the dictionary is to facilitate the interpretation and use of the image-based data available in the Human Protein Atlas, but also to serve as a tool for training and understanding tissue histology, pathology and cell biology. The dictionary contains three main parts, normal tissues, cancer tissues and cells, and is based on high-resolution images at different magnifications of full tissue sections stained with H & E. The cell atlas is centered on immunofluorescence and confocal microscopy images, using different color channels to highlight the organelle structure of a cell. Here, we explain how this dictionary can be used as a tool to aid clinicians and scientists in understanding the use of tissue histology and cancer pathology in diagnostics and biomarker studies.


A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections.

  • Elton Rexhepaj‎ et al.
  • PloS one‎
  • 2013‎

Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative.


Transcriptomics resources of human tissues and organs.

  • Mathias Uhlén‎ et al.
  • Molecular systems biology‎
  • 2016‎

Quantifying the differential expression of genes in various human organs, tissues, and cell types is vital to understand human physiology and disease. Recently, several large-scale transcriptomics studies have analyzed the expression of protein-coding genes across tissues. These datasets provide a framework for defining the molecular constituents of the human body as well as for generating comprehensive lists of proteins expressed across tissues or in a tissue-restricted manner. Here, we review publicly available human transcriptome resources and discuss body-wide data from independent genome-wide transcriptome analyses of different tissues. Gene expression measurements from these independent datasets, generated using samples from fresh frozen surgical specimens and postmortem tissues, are consistent. Overall, the different genome-wide analyses support a distribution in which many proteins are found in all tissues and relatively few in a tissue-restricted manner. Moreover, we discuss the applications of publicly available omics data for building genome-scale metabolic models, used for analyzing cell and tissue functions both in physiological and in disease contexts.


Enhanced Validation of Antibodies Enables the Discovery of Missing Proteins.

  • Åsa Sivertsson‎ et al.
  • Journal of proteome research‎
  • 2020‎

The localization of proteins at a tissue- or cell-type-specific level is tightly linked to the protein function. To better understand each protein's role in cellular systems, spatial information constitutes an important complement to quantitative data. The standard methods for determining the spatial distribution of proteins in single cells of complex tissue samples make use of antibodies. For a stringent analysis of the human proteome, we used orthogonal methods and independent antibodies to validate 5981 antibodies that show the expression of 3775 human proteins across all major human tissues. This enhanced validation uncovered 56 proteins corresponding to the group of "missing proteins" and 171 proteins of unknown function. The presented strategy will facilitate further discussions around criteria for evidence of protein existence based on immunohistochemistry and serves as a useful guide to identify candidate proteins for integrative studies with quantitative proteomics methods.


International network of cancer genome projects.

  • International Cancer Genome Consortium‎ et al.
  • Nature‎
  • 2010‎

The International Cancer Genome Consortium (ICGC) was launched to coordinate large-scale cancer genome studies in tumours from 50 different cancer types and/or subtypes that are of clinical and societal importance across the globe. Systematic studies of more than 25,000 cancer genomes at the genomic, epigenomic and transcriptomic levels will reveal the repertoire of oncogenic mutations, uncover traces of the mutagenic influences, define clinically relevant subtypes for prognosis and therapeutic management, and enable the development of new cancer therapies.


A systems-approach reveals human nestin is an endothelial-enriched, angiogenesis-independent intermediate filament protein.

  • Philip Dusart‎ et al.
  • Scientific reports‎
  • 2018‎

The intermediate filament protein nestin is expressed during embryonic development, but considered largely restricted to areas of regeneration in the adult. Here, we perform a body-wide transcriptome and protein-profiling analysis to reveal that nestin is constitutively, and highly-selectively, expressed in adult human endothelial cells (EC), independent of proliferative status. Correspondingly, we demonstrate that it is not a marker for tumour EC in multiple malignancy types. Imaging of EC from different vascular beds reveals nestin subcellular distribution is shear-modulated. siRNA inhibition of nestin increases EC proliferation, and nestin expression is reduced in atherosclerotic plaque neovessels. eQTL analysis reveals an association between SNPs linked to cardiovascular disease and reduced aortic EC nestin mRNA expression. Our study challenges the dogma that nestin is a marker of proliferation, and provides insight into its regulation and function in EC. Furthermore, our systems-based approach can be applied to investigate body-wide expression profiles of any candidate protein.


A single-cell type transcriptomics map of human tissues.

  • Max Karlsson‎ et al.
  • Science advances‎
  • 2021‎

Advances in molecular profiling have opened up the possibility to map the expression of genes in cells, tissues, and organs in the human body. Here, we combined single-cell transcriptomics analysis with spatial antibody-based protein profiling to create a high-resolution single-cell type map of human tissues. An open access atlas has been launched to allow researchers to explore the expression of human protein-coding genes in 192 individual cell type clusters. An expression specificity classification was performed to determine the number of genes elevated in each cell type, allowing comparisons with bulk transcriptomics data. The analysis highlights distinct expression clusters corresponding to cell types sharing similar functions, both within the same organs and between organs.


A global view of protein expression in human cells, tissues, and organs.

  • Fredrik Pontén‎ et al.
  • Molecular systems biology‎
  • 2009‎

Defining the protein profiles of tissues and organs is critical to understanding the unique characteristics of the various cell types in the human body. In this study, we report on an anatomically comprehensive analysis of 4842 protein profiles in 48 human tissues and 45 human cell lines. A detailed analysis of over 2 million manually annotated, high-resolution, immunohistochemistry-based images showed a high fraction (>65%) of expressed proteins in most cells and tissues, with very few proteins (<2%) detected in any single cell type. Similarly, confocal microscopy in three human cell lines detected expression of more than 70% of the analyzed proteins. Despite this ubiquitous expression, hierarchical clustering analysis, based on global protein expression patterns, shows that the analyzed cells can be still subdivided into groups according to the current concepts of histology and cellular differentiation. This study suggests that tissue specificity is achieved by precise regulation of protein levels in space and time, and that different tissues in the body acquire their unique characteristics by controlling not which proteins are expressed but how much of each is produced.


Analysis of the Human Prostate-Specific Proteome Defined by Transcriptomics and Antibody-Based Profiling Identifies TMEM79 and ACOXL as Two Putative, Diagnostic Markers in Prostate Cancer.

  • Gillian O'Hurley‎ et al.
  • PloS one‎
  • 2015‎

To better understand prostate function and disease, it is important to define and explore the molecular constituents that signify the prostate gland. The aim of this study was to define the prostate specific transcriptome and proteome, in comparison to 26 other human tissues. Deep sequencing of mRNA (RNA-seq) and immunohistochemistry-based protein profiling were combined to identify prostate specific gene expression patterns and to explore tissue biomarkers for potential clinical use in prostate cancer diagnostics. We identified 203 genes with elevated expression in the prostate, 22 of which showed more than five-fold higher expression levels compared to all other tissue types. In addition to previously well-known proteins we identified two poorly characterized proteins, TMEM79 and ACOXL, with potential to differentiate between benign and cancerous prostatic glands in tissue biopsies. In conclusion, we have applied a genome-wide analysis to identify the prostate specific proteome using transcriptomics and antibody-based protein profiling to identify genes with elevated expression in the prostate. Our data provides a starting point for further functional studies to explore the molecular repertoire of normal and diseased prostate including potential prostate cancer markers such as TMEM79 and ACOXL.


Antibody-based protein profiling of the human chromosome 21.

  • Mathias Uhlén‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2012‎

The Human Proteome Project has been proposed to create a knowledge-based resource based on a systematical mapping of all human proteins, chromosome by chromosome, in a gene-centric manner. With this background, we here describe the systematic analysis of chromosome 21 using an antibody-based approach for protein profiling using both confocal microscopy and immunohistochemistry, complemented with transcript profiling using next generation sequencing data. We also describe a new approach for protein isoform analysis using a combination of antibody-based probing and isoelectric focusing. The analysis has identified several genes on chromosome 21 with no previous evidence on the protein level, and the isoform analysis indicates that a large fraction of human proteins have multiple isoforms. A chromosome-wide matrix is presented with status for all chromosome 21 genes regarding subcellular localization, tissue distribution, and molecular characterization of the corresponding proteins. The path to generate a chromosome-specific resource, including integrated data from complementary assay platforms, such as mass spectrometry and gene tagging analysis, is discussed.


The protein expression profile of ACE2 in human tissues.

  • Feria Hikmet‎ et al.
  • Molecular systems biology‎
  • 2020‎

The novel SARS-coronavirus 2 (SARS-CoV-2) poses a global challenge on healthcare and society. For understanding the susceptibility for SARS-CoV-2 infection, the cell type-specific expression of the host cell surface receptor is necessary. The key protein suggested to be involved in host cell entry is angiotensin I converting enzyme 2 (ACE2). Here, we report the expression pattern of ACE2 across > 150 different cell types corresponding to all major human tissues and organs based on stringent immunohistochemical analysis. The results were compared with several datasets both on the mRNA and protein level. ACE2 expression was mainly observed in enterocytes, renal tubules, gallbladder, cardiomyocytes, male reproductive cells, placental trophoblasts, ductal cells, eye, and vasculature. In the respiratory system, the expression was limited, with no or only low expression in a subset of cells in a few individuals, observed by one antibody only. Our data constitute an important resource for further studies on SARS-CoV-2 host cell entry, in order to understand the biology of the disease and to aid in the development of effective treatments to the viral infection.


Blood protein profiles related to preterm birth and retinopathy of prematurity.

  • Hanna Danielsson‎ et al.
  • Pediatric research‎
  • 2022‎

Nearly one in ten children is born preterm. The degree of immaturity is a determinant of the infant's health. Extremely preterm infants have higher morbidity and mortality than term infants. One disease affecting extremely preterm infants is retinopathy of prematurity (ROP), a multifactorial neurovascular disease that can lead to retinal detachment and blindness. The advances in omics technology have opened up possibilities to study protein expressions thoroughly with clinical accuracy, here used to increase the understanding of protein expression in relation to immaturity and ROP.


The kidney transcriptome and proteome defined by transcriptomics and antibody-based profiling.

  • Masato Habuka‎ et al.
  • PloS one‎
  • 2014‎

To understand renal functions and disease, it is important to define the molecular constituents of the various compartments of the kidney. Here, we used comparative transcriptomic analysis of all major organs and tissues in the human body, in combination with kidney tissue micro array based immunohistochemistry, to generate a comprehensive description of the kidney-specific transcriptome and proteome. A special emphasis was placed on the identification of genes and proteins that were elevated in specific kidney subcompartments. Our analysis identified close to 400 genes that had elevated expression in the kidney, as compared to the other analysed tissues, and these were further subdivided, depending on expression levels, into tissue enriched, group enriched or tissue enhanced. Immunohistochemistry allowed us to identify proteins with distinct localisation to the glomeruli (n = 11), proximal tubules (n = 120), distal tubules (n = 9) or collecting ducts (n = 8). Among the identified kidney elevated transcripts, we found several proteins not previously characterised or identified as elevated in kidney. This description of the kidney specific transcriptome and proteome provides a resource for basic and clinical research to facilitate studies to understand kidney biology and disease.


Correlations between RNA and protein expression profiles in 23 human cell lines.

  • Marcus Gry‎ et al.
  • BMC genomics‎
  • 2009‎

The Central Dogma of biology holds, in famously simplified terms, that DNA makes RNA makes proteins, but there is considerable uncertainty regarding the general, genome-wide correlation between levels of RNA and corresponding proteins. Therefore, to assess degrees of this correlation we compared the RNA profiles (determined using both cDNA- and oligo-based microarrays) and protein profiles (determined immunohistochemically in tissue microarrays) of 1066 gene products in 23 human cell lines.


Genome-Scale Metabolic Modeling of Glioblastoma Reveals Promising Targets for Drug Development.

  • Ida Larsson‎ et al.
  • Frontiers in genetics‎
  • 2020‎

Glioblastoma (GBM) is an aggressive type of brain cancer with a poor prognosis for affected patients. The current line of treatment only gives the patients a survival time of on average 15 months. In this work, we use genome-scale metabolic models (GEMs) together with other systems biology tools to examine the global transcriptomics-data of GBM-patients obtained from The Cancer Genome Atlas (TCGA). We reveal the molecular mechanisms underlying GBM and identify potential therapeutic targets for effective treatment of patients. The work presented consists of two main parts. The first part stratifies the patients into two groups, high and low survival, and compares their gene expression. The second part uses GBM and healthy brain tissue GEMs to simulate gene knockout in a GBM cell model to find potential therapeutic targets and predict their side effect in healthy brain tissue. We (1) find that genes upregulated in the patients with low survival are linked to various stages of the glioma invasion process, and (2) identify five essential genes for GBM, whose inhibition is non-toxic to healthy brain tissue, therefore promising to investigate further as therapeutic targets.


Systems Analysis Reveals Ageing-Related Perturbations in Retinoids and Sex Hormones in Alzheimer's and Parkinson's Diseases.

  • Simon Lam‎ et al.
  • Biomedicines‎
  • 2021‎

Neurodegenerative diseases, including Alzheimer's (AD) and Parkinson's diseases (PD), are complex heterogeneous diseases with highly variable patient responses to treatment. Due to the growing evidence for ageing-related clinical and pathological commonalities between AD and PD, these diseases have recently been studied in tandem. In this study, we analysed transcriptomic data from AD and PD patients, and stratified these patients into three subclasses with distinct gene expression and metabolic profiles. Through integrating transcriptomic data with a genome-scale metabolic model and validating our findings by network exploration and co-analysis using a zebrafish ageing model, we identified retinoids as a key ageing-related feature in all subclasses of AD and PD. We also demonstrated that the dysregulation of androgen metabolism by three different independent mechanisms is a source of heterogeneity in AD and PD. Taken together, our work highlights the need for stratification of AD/PD patients and development of personalised and precision medicine approaches based on the detailed characterisation of these subclasses.


High RBM3 expression in prostate cancer independently predicts a reduced risk of biochemical recurrence and disease progression.

  • Liv Jonsson‎ et al.
  • Diagnostic pathology‎
  • 2011‎

High expression of the RNA-binding protein RBM3 has previously been found to be associated with good prognosis in breast cancer, ovarian cancer, malignant melanoma and colorectal cancer. The aim of this study was to examine the prognostic impact of immunohistochemical RBM3 expression in prostate cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: