Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 64 papers

Molecular cloning, tissue distribution, and effect of fasting and refeeding on the expression of neuropeptide Y in Channa argus.

  • Song Yang‎ et al.
  • General and comparative endocrinology‎
  • 2018‎

Neuropeptide Y (NPY) is a 36 amino-acid amidated peptide of the pancreatic polypeptide (PP) family, which plays an important role in appetite regulation and energy expenditure in mammals. Although several teleost NPY have been identified, its roles remain unclear in fish. We herein reported on the molecular cloning, tissue distribution and the effect of fasting on the expression of NPY in Channa argus, and designated as CaNPY. It consisted of a 300 bp open reading frame predicted to encode a prepro-NPY of 99 amino acids. Sequence analysis revealed that CaNPY was highly conserved (>60%) with other vertebrate NPY. Phylogenetic analysis highly supported CaNPY was closely related to piscine NPY. In addition, except for muscle and spleen tissues, CaNPY was found to extensively expressed in all other detected tissues, with the highest level in brain. Futhermore, the CaNPY transcript was found to significantly increase after short-term and long-term food deprivation, and dramatically decrease following refeeding. These findings suggested that CaNPY might be involved in food intake regulation and it could be as a potential target locus to improve commercial production of this kind of fish.


Comparative Transcriptome Analysis Reveals Substantial Tissue Specificity in Human Aortic Valve.

  • Jun Wang‎ et al.
  • Evolutionary bioinformatics online‎
  • 2016‎

RNA sequencing (RNA-seq) has revolutionary roles in transcriptome identification and quantification of different types of tissues and cells in many organisms. Although numerous RNA-seq data derived from many types of human tissues and cell lines, little is known on the transcriptome repertoire of human aortic valve. In this study, we sequenced the total RNA prepared from two calcified human aortic valves and reported the whole transcriptome of human aortic valve. Integrating RNA-seq data of 13 human tissues from Human Body Map 2 Project, we constructed a transcriptome repertoire of human tissues, including 19,505 protein-coding genes and 4,948 long intergenic noncoding RNAs (lincRNAs). Among them, 263 lincRNAs were identified as novel noncoding transcripts in our data. By comparing transcriptome data among different human tissues, we observed substantial tissue specificity of RNA transcripts, both protein-coding genes and lincRNAs, in human aortic valve. Further analysis revealed that aortic valve-specific lincRNAs were more likely to be recently derived from repetitive elements in the primate lineage, but were less likely to be conserved at the nucleotide level. Expression profiling analysis showed significant lower expression levels of aortic valve-specific protein-coding genes and lincRNA genes, when compared with genes that were universally expressed in various tissues. Isoform-level expression analysis also showed that a majority of mRNA genes had a major isoform expressed in the human aortic valve. To our knowledge, this is the first comparative transcriptome analysis between human aortic valve and other human tissues. Our results are helpful to understand the transcriptome diversity of human tissues and the underlying mechanisms that drive tissue specificity of protein-coding genes and lincRNAs in human aortic valve.


Fatty Acid Synthase Correlates With Prognosis-Related Abdominal Adipose Distribution and Metabolic Disorders of Clear Cell Renal Cell Carcinoma.

  • Wenhao Xu‎ et al.
  • Frontiers in molecular biosciences‎
  • 2020‎

Purpose: Lipid metabolism reprogramming is a major pathway in tumor evolution. This study investigated fatty acid synthase (FASN) mRNA expression in anthropometric adipose tissue and elucidated the prognostic value and potential mechanism of clear cell renal cell carcinoma (ccRCC). Materials and Methods: Transcription profiles were obtained from 533 ccRCC samples in The Cancer Genome Atlas (TCGA) cohorts. Real-time quantitative PCR (RT-qPCR) and immunohistochemistry were performed to detect FASN expression in 380 paired ccRCC and normal tissues from the Fudan University Shanghai Cancer Center (FUSCC). Visceral adipose tissue (VAT) and subcutaneous adipose tissue were at the level of the umbilicus as measured by magnetic resonance imaging (MRI). Non-targeted metabolomics and in vitro experiments were used to reveal the biological functions of FASN. Results: Increased FASN expression was significantly relevant to advanced T, N, and American Joint Committee on Cancer (AJCC) stages (p < 0.01) and significantly correlated to poor progression-free survival (PFS) and overall survival (OS) of 913 ccRCC patients in FUSCC and TCGA cohorts. Pearson's correlation coefficient indicated that FASN amplification was positively correlated to VAT% (r = 0.772, p < 0.001), which significantly correlated to poor PFS (HR = 2.066, p = 0.028) and OS (HR = 2.773, p = 0.023) in the FUSCC cohort. Transient inhibition or overexpression of FASN significantly regulated A498 and 786O cell proliferation and migration by regulating epithelial-mesenchymal transition. Inhibition of FASN led to a higher apoptotic rate and decreased lipid droplet formation compared with normal control in ccRCC cells. Non-targeted metabolomics showed that decreased de novo lipogenesis might be required to sustain an elevation of glycolytic activity in 786O cells by regulating galactinol, dl-lactate, N-acetylaspartylglutamate, and sucrose, thereby participating in carcinogenesis and progression of ccRCC. Conclusion: This study demonstrated that FASN expression is positively related to aggressive cell proliferation, migration, apoptosis, and lipid droplet formation and regulates metabolic disorders of the ccRCC microenvironment. Additionally, elevated FASN mRNA expression is significantly correlated to the abdominal obesity distribution, especially VAT%, which is a significant predictor of a poor prognosis for ccRCC patients.


Characterization of four subtypes in morphologically normal tissue excised proximal and distal to breast cancer.

  • Emanuela Gadaleta‎ et al.
  • NPJ breast cancer‎
  • 2020‎

Widespread mammographic screening programs and improved self-monitoring allow for breast cancer to be detected earlier than ever before. Breast-conserving surgery is a successful treatment for select women. However, up to 40% of women develop local recurrence after surgery despite apparently tumor-free margins. This suggests that morphologically normal breast may harbor early alterations that contribute to increased risk of cancer recurrence. We conducted a comprehensive transcriptomic and proteomic analysis to characterize 57 fresh-frozen tissues from breast cancers and matched histologically normal tissues resected proximal to (<2 cm) and distant from (5-10 cm) the primary tumor, using tissues from cosmetic reduction mammoplasties as baseline. Four distinct transcriptomic subtypes are identified within matched normal tissues: metabolic; immune; matrisome/epithelial-mesenchymal transition, and non-coding enriched. Key components of the subtypes are supported by proteomic and tissue composition analyses. We find that the metabolic subtype is associated with poor prognosis (p < 0.001, HR6.1). Examination of genes representing the metabolic signature identifies several genes able to prognosticate outcome from histologically normal tissues. A subset of these have been reported for their predictive ability in cancer but, to the best of our knowledge, these have not been reported altered in matched normal tissues. This study takes an important first step toward characterizing matched normal tissues resected at pre-defined margins from the primary tumor. Unlocking the predictive potential of unexcised tissue could prove key to driving the realization of personalized medicine for breast cancer patients, allowing for more biologically-driven analyses of tissue margins than morphology alone.


Elevated CD36 expression correlates with increased visceral adipose tissue and predicts poor prognosis in ccRCC patients.

  • Wen-Hao Xu‎ et al.
  • Journal of Cancer‎
  • 2019‎

Objective: Growing evidence has proved obesity one of the confirmed important etiologic indicators for renal cell carcinoma (RCC). CD36 is underpinned to be involved in adipose absorption, but its role in clear cell renal cell carcinoma (ccRCC) remains unclear. This study aimed to investigate the mRNA expression of CD36 in anthropometric measures of adipose tissue and defining its value in predicting prognosis in ccRCC patients. Methods: Real-Time qPCR gene expression analysis was detected from 367 paired ccRCC and adjacent normal tissues. Distributions of categorical clinical-pathological data together with levels of CD36 expression were compared with χ2-test in a contingency table. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were measured by magnetic resonance imaging (MRI) and identified at the level of the umbilicus. Pearson's correlation coefficient was utilized to quantify relations between body mass index (BMI), VAT%, SAT and CD36 expression respectively. Partial likelihood test from univariate and multivariate Cox regression analysis were developed to address the influence of independent factors on progression-free survival (PFS) and overall survival (OS). The Kaplan-Meier method and log-rank test were performed to assess the survival benefits between discrete levels. Results: In the current study, CD36 mRNA was demonstrated highly expressed in ccRCC compared with normal tissues. In addition, CD36 mRNA expression was significantly increased in patients with advanced TNM stage (p=0.003, p<0.001, p<0.001), and high VAT% (p=0.004). Pearson's correlation coefficient indicated that CD36 amplification positively correlated with BMI (r=0.117, p=0.025), VAT% (r=0.465, p<0.001), while negatively associated with SAT (r=-0.296, p=0.002). Median PFS was 60 months and OS was 99 months. Meanwhile, ccRCC patients with elevated CD36 expression held shorter PFS and OS, with hazard ratios [HR; 95% confidence interval (CI)] of 4.873 (3.300-7.196, p<0.001) and 4.610 (2.956-7.189, p<0.001). In 104 cases with available MRI scans, VAT was significantly correlated with poor PFS and OS, with HR of 2.556 (1.036-6.310, p<0.042) and 3.291 (1.034-10.477, p<0.044). A total of 100 significant genes were obtained from GSEA, and CD36 was found involved in the most significant pathways including fatty acid metabolism, UV response, angiogenesis and transforming growth factor beta (TGF-β) signaling pathways. Conclusion: In conclusion, our study first reveal that elevated CD36 mRNA expression is positively correlated to distribution of abdominal adipose, particularly VAT%, which, in addition, notably predicts poor prognosis in ccRCC patients.


ACSNI: An unsupervised machine-learning tool for prediction of tissue-specific pathway components using gene expression profiles.

  • Chinedu Anthony Anene‎ et al.
  • Patterns (New York, N.Y.)‎
  • 2021‎

Determining the tissue- and disease-specific circuit of biological pathways remains a fundamental goal of molecular biology. Many components of these biological pathways still remain unknown, hindering the full and accurate characterization of biological processes of interest. Here we describe ACSNI, an algorithm that combines prior knowledge of biological processes with a deep neural network to effectively decompose gene expression profiles (GEPs) into multi-variable pathway activities and identify unknown pathway components. Experiments on public GEP data show that ACSNI predicts cogent components of mTOR, ATF2, and HOTAIRM1 signaling that recapitulate regulatory information from genetic perturbation and transcription factor binding datasets. Our framework provides a fast and easy-to-use method to identify components of signaling pathways as a tool for molecular mechanism discovery and to prioritize genes for designing future targeted experiments (https://github.com/caanene1/ACSNI).


Tissue expression profiles unveil the gene interaction of hepatopancreas, eyestalk, and ovary in the precocious female Chinese mitten crab, Eriocheir sinensis.

  • Xiaowen Chen‎ et al.
  • BMC genetics‎
  • 2019‎

Sexual precocity is a common biological phenomenon in animal species. A large number of precocity individuals were identified in Chinese mitten crab Eriocheir sinensis, which caused huge economic loss annually. However, the underlying genetic basis of precocity in E. sinensis remains unclear to date.


A simple preparation step to remove excess liquid lipids in white adipose tissue enabling improved detection of metabolites via MALDI-FTICR imaging MS.

  • Qian Wang‎ et al.
  • Histochemistry and cell biology‎
  • 2022‎

Matrix-assisted laser desorption ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) imaging mass spectrometry (MS) is a powerful technology used to analyze metabolites in various tissues. However, it faces significant challenges in studying adipose tissues. Poor matrix distribution and crystallization caused by excess liquid lipids on the surface of tissue sections hamper m/z species detection, an adverse effect that particularly presents in lipid-rich white adipose tissue (WAT). In this study, we integrated a simple and low-cost preparation step into the existing MALDI-FTICR imaging MS pipeline. The new method-referred to as filter paper application-is characterized by an easy sample handling and high reproducibility. The aforementioned filter paper is placed onto the tissue prior to matrix application in order to remove the layer of excess liquid lipids. Consequently, MALDI-FTICR imaging MS detection was significantly improved, resulting in a higher number of detected m/z species and higher ion intensities. After analyzing various durations of filter paper application, 30 s was found to be optimal, resulting in the detection of more than 3700 m/z species. Apart from the most common lipids found in WAT, other molecules involved in various metabolic pathways were detected, including nucleotides, carbohydrates, and amino acids. Our study is the first to propose a solution to a specific limitation of MALDI-FTICR imaging MS in investigating lipid-rich WAT. The filter paper approach can be performed quickly and is particularly effective for achieving uniform matrix distribution on fresh frozen WAT while maintaining tissue integrity. It thus helps to gain insight into the metabolism in WAT.


In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment.

  • Qian Chen‎ et al.
  • Nature nanotechnology‎
  • 2019‎

Cancer recurrence after surgical resection remains a significant cause of treatment failure. Here, we have developed an in situ formed immunotherapeutic bioresponsive gel that controls both local tumour recurrence after surgery and development of distant tumours. Briefly, calcium carbonate nanoparticles pre-loaded with the anti-CD47 antibody are encapsulated in the fibrin gel and scavenge H+ in the surgical wound, allowing polarization of tumour-associated macrophages to the M1-like phenotype. The released anti-CD47 antibody blocks the 'don't eat me' signal in cancer cells, thereby increasing phagocytosis of cancer cells by macrophages. Macrophages can promote effective antigen presentation and initiate T cell mediated immune responses that control tumour growth. Our findings indicate that the immunotherapeutic fibrin gel 'awakens' the host innate and adaptive immune systems to inhibit both local tumour recurrence post surgery and potential metastatic spread.


AG1478 Elicits a Novel Anti-Influenza Function via an EGFR-Independent, GBF1-Dependent Pathway.

  • Xu Zhou‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Current options for preventing or treating influenza are still limited, and new treatments for influenza viral infection are urgently needed. In the present study, we serendipitously found that a small-molecule inhibitor (AG1478), previously used for epidermal growth factor receptor (EGFR) inhibition, demonstrated a potent activity against influenza both in vitro and in vivo. Surprisingly, the antiviral effect of AG1478 was not mediated by its EGFR inhibitory activity, as influenza virus was insensitive to EGFR blockade by other EGFR inhibitors or by siRNA knockdown of EGFR. Its antiviral activity was also interferon independent as demonstrated by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) knockout approach. Instead, AG1478 was found to target the Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1 (GBF1)-ADP-ribosylation factor 1 (ARF1) system by reversibly inhibiting GBF1 activity and disrupting its Golgi-cytoplasmic trafficking. Compared to known GBF1 inhibitors, AG1478 demonstrated lower cellular toxicity and better preservation of Golgi structure. Furthermore, GBF1 was found to interact with a specific set of viral proteins including M1, NP, and PA. Additionally, the alternation of GBF1 distribution induced by AG1478 treatment disrupted these interactions. Because targeting host factors, instead of the viral component, imposes a higher barrier for developing resistance, GBF1 modulation may be an effective approach to treat influenza infection.


Molecular characterization of two leptin genes and their transcriptional changes in response to fasting and refeeding in Northern snakehead (Channa argus).

  • Zheng-Yong Wen‎ et al.
  • Gene‎
  • 2020‎

Leptin has been proved to play critical roles in energy metabolism, body weight regulation, food intake, reproduction and immunity in mammals. However, its roles are still largely unclear in fish. Here, we report two leptin genes (lepA and lepB) from the Northern snakehead (Channa argus) and their transcriptions in response to different feeding status. The snakehead lepA is 781 bp in length and contains a 480 bp open reading frame (ORF) encoding a 159-aa protein, while the snakehead lepB is 553 bp in length and contains a 477 bp ORF encoding a 158-aa protein. Multi-sequences alignment, three-dimensional (3D) model prediction, syntenic and genomic comparison, and phylogenetic analysis confirm two leptin genes are widely existing in teleost. Tissue distribution revealed that the two leptin genes exhibit different patterns. In a post-prandial experiment, the hepatic lepA and brain lepB showed a similar transcription pattern. In a long-term (2-week) fasting and refeeding experiment, the hepatic lepA and brain lepB showed a similar transcription change pattern induced by food deprivation stimulation but differential changes after refeeding. These findings suggest snakehead lepA and lepB are differential both in tissue distribution and molecular functions, and they might play as an important regulator in energy metabolism and food intake in fish, respectively.


Scaffold-Mediated Sustained, Non-viral Delivery of miR-219/miR-338 Promotes CNS Remyelination.

  • Ulla Milbreta‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2019‎

The loss of oligodendrocytes (OLs) and subsequently myelin sheaths following injuries or pathologies in the CNS leads to debilitating functional deficits. Unfortunately, effective methods of remyelination remain limited. Here, we present a scaffolding system that enables sustained non-viral delivery of microRNAs (miRs) to direct OL differentiation, maturation, and myelination. We show that miR-219/miR-338 promoted primary rat OL differentiation and myelination in vitro. Using spinal cord injury as a proof-of-concept, we further demonstrate that miR-219/miR-338 could also be delivered non-virally in vivo using an aligned fiber-hydrogel scaffold to enhance remyelination after a hemi-incision injury at C5 level of Sprague-Dawley rats. Specifically, miR-219/miR-338 mimics were incorporated as complexes with the carrier, TransIT-TKO (TKO), together with neurotrophin-3 (NT-3) within hybrid scaffolds that comprised poly(caprolactone-co-ethyl ethylene phosphate) (PCLEEP)-aligned fibers and collagen hydrogel. After 1, 2, and 4 weeks post-treatment, animals that received NT-3 and miR-219/miR-338 treatment preserved a higher number of Olig2+ oligodendroglial lineage cells as compared with those treated with NT-3 and negative scrambled miRs (Neg miRs; p < 0.001). Additionally, miR-219/miR-338 increased the rate and extent of differentiation of OLs. At the host-implant interface, more compact myelin sheaths were observed when animals received miR-219/miR-338. Similarly within the scaffolds, miR-219/miR-338 samples contained significantly more myelin basic protein (MBP) signals (p < 0.01) and higher myelination index (p < 0.05) than Neg miR samples. These findings highlight the potential of this platform to promote remyelination within the CNS.


Molecular cytogenetic analyses of Epinephelus bruneus and Epinephelus moara (Perciformes, Epinephelidae).

  • Minglan Guo‎ et al.
  • PeerJ‎
  • 2014‎

Genus Epinephelus (Perciformes, Epinephelidae), commonly known as groupers, are usually difficult in species identification for the lack and/or change of morphological specialization. In this study, molecular cytogenetic analyses were firstly performed to identify the closely related species Epinephelus bruneus and E. moara in this genus. The species-specific differences of both fish species showed in karyotype, chromosomal distribution of nucleolar organizer regions (NORs) and localization of 18S rDNA. The heterochromatin (interstitial C-bands) and distribution pattern of telomere (TTAGGG) n in E. bruneus revealed the chromosomal rearrangements and different karyotypic evolutionary characteristics compared to those in E. moara. The cytogenetic data suggested that the lineages of E. bruneus and E. moara were recently derived within the genus Epinephelus, and E. moara exhibited more plesiomorphic features than E. bruneus. All results confirmed that E. moara, which has long been considered a synonym of E. bruneus, is a distinct species in the family Epinephelidae. In addition, molecular cytogenetic analyses are useful in species differentiation and phylogenetic reconstruction in groupers.


A microfluidic platform integrating functional vascularized organoids-on-chip.

  • Clément Quintard‎ et al.
  • Nature communications‎
  • 2024‎

The development of vascular networks in microfluidic chips is crucial for the long-term culture of three-dimensional cell aggregates such as spheroids, organoids, tumoroids, or tissue explants. Despite rapid advancement in microvascular network systems and organoid technologies, vascularizing organoids-on-chips remains a challenge in tissue engineering. Most existing microfluidic devices poorly reflect the complexity of in vivo flows and require complex technical set-ups. Considering these constraints, we develop a platform to establish and monitor the formation of endothelial networks around mesenchymal and pancreatic islet spheroids, as well as blood vessel organoids generated from pluripotent stem cells, cultured for up to 30 days on-chip. We show that these networks establish functional connections with the endothelium-rich spheroids and vascular organoids, as they successfully provide intravascular perfusion to these structures. We find that organoid growth, maturation, and function are enhanced when cultured on-chip using our vascularization method. This microphysiological system represents a viable organ-on-chip model to vascularize diverse biological 3D tissues and sets the stage to establish organoid perfusions using advanced microfluidics.


Molecular characterization of a p38 mitogen-activated protein kinase gene from Scylla paramamosain and its expression profiles during pathogenic challenge.

  • Zehui Yu‎ et al.
  • Journal of invertebrate pathology‎
  • 2017‎

A novel p38 MAPK gene from S. paramamosain was cloned and characterized by rapid amplification of cDNA ends (RACE) technology. S. paramamosain p38 (Sp-p38) MAPK gene consists of an open reading frame of 1095bp encoding a 365-amino-acid protein, which showed close phylogenetic relationship to Litopenaeus vannamei p38 MAPK. The tissue distribution patterns showed that Sp-p38 MAPK was widely expressed in all examined tissues, with the highest expression in hemocytes and intestines. The expression levels of Sp-p38 MAPK in hemocytes was up-regulated post-stimulation, which reached the peak at 6h and 12h after bacteria (S. aureus and V. harveyi) and WSSV infection, respectively. In conclusion, our data contributed to define the biological characteristics of Sp-p38 MAPK and further demonstrated the critical role of Sp-p38 MAPK in vivo during the viral and bacterial infection.


Molecular cloning of two kcnk3 genes from the Northern snakehead (Channa argus) for quantification of their transcriptions in response to fasting and refeeding.

  • Zheng-Yong Wen‎ et al.
  • General and comparative endocrinology‎
  • 2019‎

Potassium channel subfamily K member 3 (KCNK3) has been reported to play important roles in membrane potential conduction, pulmonary hypertension and thermogenesis regulation in mammals. However, its roles remain largely unknown and scarce reports were seen in fish. In the present study, we for the first time identified two kcnk3 genes (kcnk3a and kcnk3b) from the carnivorous Northern snakehead (Channa argus) by molecular cloning and a genomic survey. Subsequently, their transcription changes in response to different feeding status were investigated. Full-length coding sequences of the kcnk3a and kcnk3b genes are 1203 and 1176 bp, encoding 400 and 391 amino acids, respectively. Multiple alignments, 3D-structure prediction and phylogenetic analysis further suggested that these kcnk3 genes may be highly conserved in vertebrates. Tissue distribution analysis by real-time PCR demonstrated that both the snakehead kcnk3s were widely transcribed in majority of the examined tissues but with different distribution patterns. In a short-term (24-h) fasting experiment, we observed that brain kcnk3a and kcnk3b genes showed totally opposite transcription patterns. In a long-term (2-week) fasting and refeeding experiment, we also observed differential change patterns for the brain kcnk3 genes. In summary, our findings suggest that the two kcnk3 genes are close while present different transcription responses to fasting and refeeding. They therefore can be potentially selected as novel target genes for improvement of production and quality of this economically important fish.


The Role of Serine Peptidase Inhibitor Kazal Type 13 (SPINK13) as a Clinicopathological and Prognostic Biomarker in Patients with Clear Cell Renal Cell Carcinoma.

  • Wen-Hao Xu‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2019‎

BACKGROUND The serine peptidase inhibitor Kazal type 13 (SPINK13) gene has tumor suppressor activity, but its role in renal cell carcinoma (RCC) remains unknown. This study aimed to investigate mRNA expression of SPINK13 in clear cell renal cell carcinoma (CCRCC) in human tissue and to use bioinformatics data to investigate the role of SPINK13 expression as a clinicopathological and prognostic biomarker for patients with CCRCC. MATERIAL AND METHODS Patients with CCRCC (N=533) with available RNA sequence data from The Cancer Genome Atlas (TCGA)-CCRCC database were analyzed with patients who had a tissue diagnosis of CCRCC (N=305) at the Fudan University Shanghai Cancer Center (FUSCC). Differential transcriptional and proteome expression profiles were obtained from the ONCOMINE cancer microarray database, TCGA, and the Human Protein Atlas (HPA) database. Quantitative reverse transcription-polymerase chain reaction (RT-qPCR) measured SPINK13 mRNA expression in 305 samples of CCRCC tissue from the FUSCC. The effects of clinicopathological parameters on progression-free survival (PFS) and overall survival (OS) were analyzed using the Kaplan-Meier and log-rank test. RESULTS Transcriptional and proteome expression of SPINK13 were significantly increased CCRCC tissue samples. Increased SPINK13 mRNA expression was significantly associated with reduced PFS and OS in 838 patients with CCRCC patients from the two independent cohorts, the FUSCC and the TCGA-CCRCC cohorts (p<0.01). Gene set enrichment analysis (GSEA) showed that SPINK13 expression was involved in complement, apical junction, epithelial-mesenchymal transition (EMT), glycolysis, hypoxia, and inflammation signaling pathways. CONCLUSIONS Increased expression of SPINK13 was associated with poor prognosis in patients with CCRCC.


Role of Sam68 in Sunitinib induced renal cell carcinoma apoptosis.

  • Zeshen Wu‎ et al.
  • Cancer medicine‎
  • 2022‎

Sunitinib is one of the first-line targeted drugs for metastatic renal cell carcinoma (RCC) with dual effects of antiangiogensis and proapoptosis. Sam68 (Src-associated in mitosis, 68 KDa), is found being involved in cell apoptosis. This article reveals that Sam68 impacts the sensitivity to sunitinib by mediating the apoptosis of RCC cells. Immunohistochemical staining indicated that the Sam68 expression levels in sunitinib sensitive tumor tissues were markedly higher than those in sunitinib resistant tumor tissues. Sunitinib induced RCC cell apoptosis in a concentration-dependent manner and inhibited the expression of total and phosphorylated Sam68 (p-Sam68). Downregulation of Sam68 expression inhibited RCC cell apoptosis induced by sunitinib. While upregulation of Sam68 expression could enhance apoptosis induced by sunitinib. Xenograft models showed that tumors in the Sam68-knockdown group did not shrink as much as those in the control group after treatment with sunitinib for 4 weeks. Together, our results suggest that Sam68 expression is associated with the sensitivity of ccRCC patients to sunitinib. Sam68 may promote cell apoptosis induced by sunitinib, and the Sam68 expression level may be a biomarker for predicting sunitinib sensitivity in ccRCC patients.


Spatial Metabolomics Identifies Distinct Tumor-Specific Subtypes in Gastric Cancer Patients.

  • Jun Wang‎ et al.
  • Clinical cancer research : an official journal of the American Association for Cancer Research‎
  • 2022‎

Current systems of gastric cancer molecular classification include genomic, molecular, and morphological features. Gastric cancer classification based on tissue metabolomics remains lacking. This study aimed to define metabolically distinct gastric cancer subtypes and identify their clinicopathological and molecular characteristics.


Ghrelin-Ghrelin receptor (GSHR) pathway via endocannabinoid signal affects the expression of NPY to promote the food intake of Siberian sturgeon (Acipenser baerii).

  • Defang Chen‎ et al.
  • Hormones and behavior‎
  • 2022‎

Previous data suggested that activation of endocannabinoid receptor 1 (CB1) was necessary for the orexigenic effect of Ghrelin in rodents, but the information is limited in teleosts. To investigate the feeding regulation pathway of Ghrelin and CB1 in Siberian sturgeon (Acipenser baerii), this study first identified the Ghrelin (345 bp, complete coding sequence) and Ghrelin receptor (GHSR, 500 bp, partial coding sequence) sequences, and then detected their tissue distribution patterns, which showed that Ghrelin is mainly distribution in peripheral tissues, while GSHR is mainly in different brain divisions. Besides, the qPCR before and after feeding showed that the mRNA expressions of Ghrelin and GHSR were inhibited after feeding in telencephalon, diencephalon and mesencephalon. Subsequently, the food intake and appetite factor expressions were measured by i.c.v. co-injection of Ghrelin and GSHR antagonist. The results showed that Ghrelin promoted the food intake of Siberian sturgeon, which was reversed by its receptor antagonist. Besides, i.c.v. injection of Ghrelin decreased telencephalon CART expression while increased NPY expression in the three brain regions. In addition, to further explore the relationship of Ghrelin and CB1 signal regulating feeding, the co-injection of Ghrelin and CB1 antagonists was performed. The results showed that AM6545 (CB1 peripheral restricted antagonist) failed to affect the orexigenic effect of Ghrelin and the expression pattern of NPY mRNA in the telencephalon. While in the diencephalon, the increase of food intake and NPY mRNA expression induced by Ghrelin was completely reversed by Rimonabant (CB1 global antagonist). These results indicate Ghrelin-GSHR pathway promotes the food intake of Siberian sturgeon by inducing the expression of NPY in the diencephalon, and the stimulating effect will be reversed by cannabinoid receptor antagonism. This study provides a foundation for understanding the pathways Ghrelin and CB1 signals in appetite regulation of the teleost.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: