Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 491 papers

GATA2 mediates thyrotropin-releasing hormone-induced transcriptional activation of the thyrotropin β gene.

  • Kenji Ohba‎ et al.
  • PloS one‎
  • 2011‎

Thyrotropin-releasing hormone (TRH) activates not only the secretion of thyrotropin (TSH) but also the transcription of TSHβ and α-glycoprotein (αGSU) subunit genes. TSHβ expression is maintained by two transcription factors, Pit1 and GATA2, and is negatively regulated by thyroid hormone (T3). Our prior studies suggest that the main activator of the TSHβ gene is GATA2, not Pit1 or unliganded T3 receptor (TR). In previous studies on the mechanism of TRH-induced activation of the TSHβ gene, the involvements of Pit1 and TR have been investigated, but the role of GATA2 has not been clarified. Using kidney-derived CV1 cells and pituitary-derived GH3 and TαT1 cells, we demonstrate here that TRH signaling enhances GATA2-dependent activation of the TSHβ promoter and that TRH-induced activity is abolished by amino acid substitution in the GATA2-Zn finger domain or mutation of GATA-responsive element in the TSHβ gene. In CV1 cells transfected with TRH receptor expression plasmid, GATA2-dependent transactivation of αGSU and endothelin-1 promoters was enhanced by TRH. In the gel shift assay, TRH signal potentiated the DNA-binding capacity of GATA2. While inhibition by T3 is dominant over TRH-induced activation, unliganded TR or the putative negative T3-responsive element are not required for TRH-induced stimulation. Studies using GH3 cells showed that TRH-induced activity of the TSHβ promoter depends on protein kinase C but not the mitogen-activated protein kinase, suggesting that the signaling pathway is different from that in the prolactin gene. These results indicate that GATA2 is the principal mediator of the TRH signaling pathway in TSHβ expression.


Multiple thyrotropin β-subunit and thyrotropin receptor-related genes arose during vertebrate evolution.

  • Gersende Maugars‎ et al.
  • PloS one‎
  • 2014‎

Thyroid-stimulating hormone (TSH) is composed of a specific β subunit and an α subunit that is shared with the two pituitary gonadotropins. The three β subunits derive from a common ancestral gene through two genome duplications (1R and 2R) that took place before the radiation of vertebrates. Analysis of genomic data from phylogenetically relevant species allowed us to identify an additional Tshβ subunit-related gene that was generated through 2R. This gene, named Tshβ2, present in cartilaginous fish, little skate and elephant shark, and in early lobe-finned fish, coelacanth and lungfish, was lost in ray-finned fish and tetrapods. The absence of a second type of TSH receptor (Tshr) gene in these species suggests that both TSHs act through the same receptor. A novel Tshβ sister gene, named Tshβ3, was generated through the third genomic duplication (3R) that occurred early in the teleost lineage. Tshβ3 is present in most teleost groups but was lostin tedraodontiforms. The 3R also generated a second Tshr, named Tshrb. Interestingly, the new Tshrb was translocated from its original chromosomic position after the emergence of eels and was then maintained in its new position. Tshrb was lost in tetraodontiforms and in ostariophysians including zebrafish although the latter species have two TSHs, suggesting that TSHRb may be dispensable. The tissue distribution of duplicated Tshβs and Tshrs was studied in the European eel. The endocrine thyrotropic function in the eel would be essentially mediated by the classical Tshβ and Tshra, which are mainly expressed in the pituitary and thyroid, respectively. Tshβ3 and Tshrb showed a similar distribution pattern in the brain, pituitary, ovary and adipose tissue, suggesting a possible paracrine/autocrine mode of action in these non-thyroidal tissues. Further studies will be needed to determine the binding specificity of the two receptors and how these two TSH systems are interrelated.


Circulating thyrotropin is upregulated by estradiol.

  • Salvatore Benvenga‎ et al.
  • Journal of clinical & translational endocrinology‎
  • 2018‎

After encountering two women with serum thyrotropin (TSH) levels greater in periovulatory phase than in other days of the menstrual cycle, we hypothesized that TSH levels could be sensitive to changes in circulating estrogens in women. The objective of this study was to evaluate whether serum TSH increases after an induced acute increase of serum estradiol, and compare serum TSH increase with that of prolactin (PRL) which is a classic estradiol-upregulated pituitary hormone. In this retrospective study, we resorted to stored frozen sera from 55 women who had undergone the GnRH agonist (buserelin)-acute stimulation test of ovarian steroidogenesis. This test, that is preceded by dexamethasone administration to suppress adrenal steroidogenesis, had been performed to show an increased buserelin-stimulated response of 17-hydroxyprogesterone, a response that is frequent in polycystic ovary syndrome. Fifty-five women had enough serum volume at pertinent times (first observation early in the follicular phase and all times of the test) to permit assay of serum estradiol, TSH and PRL. Before dexamethasone administration, estradiol averaged 26.4 ± 15.5 pg/ml (reference range 23-139, follicular phase), TSH 1.78 ± 0.86 mU/L (reference range 0.3-4.2) and PRL 409.4 ± 356 mU/L (reference range 70.8-556) (mean ± SD). Serum estradiol, TSH and PRL averaged 47.2 ± 27 pg/ml, 0.77 ± 0.48 mU/L and 246.4 ± 206.8 mU/L just prior to the buserelin injection, but they peaked at 253.4 ± 113.5 pg/ml (nv 83-495, midcycle), 3.30 ± 1.65 mU/L and 540.3 ± 695.2 mU/L after injection. The responses to buserelin of estradiol, TSH and PRL were of wide magnitude. There was a significant correlation between TSH peak and serum estradiol peak, betweeen AUC0-24 h-TSH and AUC0-24 h-estradiol, or between PRL peak and estradiol peak and AUC0-24 h -PRL and AUC0-24 h-estradiol in only a subgroup of women. Therefore, women with estradiol-dependent increase in serum TSH do exist. Reference bands of serum TSH dependent on the phases of the menstrual cycle should be available.


Ingested (oral) thyrotropin releasing factor (TRH) inhibits EAE.

  • Staley A Brod‎ et al.
  • Cytokine‎
  • 2013‎

Ingested immunoactive proteins type I IFN, SIRS peptide 1-21, α-MSH, ACTH, SST inhibit clinical attacks and inflammation in acute EAE by decreasing Th1-like cytokines, increasing Th2-like cytokines or increasing T(reg) cell frequencies.


Autoantibody mimicry of hormone action at the thyrotropin receptor.

  • Bryan Faust‎ et al.
  • Nature‎
  • 2022‎

Thyroid hormones are vital in metabolism, growth and development1. Thyroid hormone synthesis is controlled by thyrotropin (TSH), which acts at the thyrotropin receptor (TSHR)2. In patients with Graves' disease, autoantibodies that activate the TSHR pathologically increase thyroid hormone activity3. How autoantibodies mimic thyrotropin function remains unclear. Here we determined cryo-electron microscopy structures of active and inactive TSHR. In inactive TSHR, the extracellular domain lies close to the membrane bilayer. Thyrotropin selects an upright orientation of the extracellular domain owing to steric clashes between a conserved hormone glycan and the membrane bilayer. An activating autoantibody from a patient with Graves' disease selects a similar upright orientation of the extracellular domain. Reorientation of the extracellular domain transduces a conformational change in the seven-transmembrane-segment domain via a conserved hinge domain, a tethered peptide agonist and a phospholipid that binds within the seven-transmembrane-segment domain. Rotation of the TSHR extracellular domain relative to the membrane bilayer is sufficient for receptor activation, revealing a shared mechanism for other glycoprotein hormone receptors that may also extend to other G-protein-coupled receptors with large extracellular domains.


Quantitative assessment of preoperative serum thyrotropin level and thyroid cancer.

  • Jiaojiao Zheng‎ et al.
  • Oncotarget‎
  • 2016‎

Thyroid stimulating hormone (TSH) is the major growth factor for thyrocytes, but the pathogenic role of serum TSH in thyroid cancer (TC) is unknown. The association between TSH level and the development of thyroid cancer has been widely evaluated recently. However, the results remain conflicting. To develop an understanding of the relationship between TSH exposure and thyroid cancer, a meta-analysis of 56 studies involving 20227 thyroid cancer cases and 50003 controls with benign thyroid nodule was performed. Overall, significantly increased TSH level was observed in thyroid cancer patients compared with controls (RoM: 1.44, 95% CI: 1.32-1.56, P < 10-5). The pooled analyses also revealed that higher serum TSH level were significantly associated with the size of TC nodule and malignancy as well as lymph node metastasis. Furthermore, significantly increased THS levels were observed preferentially for papillary thyroid cancer when stratified by histological type of tumors. However, the diagnostic value of TSH level for TC might be limited. These results suggest that higher serum TSH concentration is associated with an increased risk of thyroid cancer.


Thyrotropin aggravates atherosclerosis by promoting macrophage inflammation in plaques.

  • Chongbo Yang‎ et al.
  • The Journal of experimental medicine‎
  • 2019‎

Subclinical hypothyroidism is associated with cardiovascular diseases, yet the underlying mechanism remains largely unknown. Herein, in a common population (n = 1,103), TSH level was found to be independently correlated with both carotid plaque prevalence and intima-media thickness. Consistently, TSH receptor ablation in ApoE -/- mice attenuated atherogenesis, accompanied by decreased vascular inflammation and macrophage burden in atherosclerotic plaques. These results were also observed in myeloid-specific Tshr-deficient ApoE -/- mice, which indicated macrophages to be a critical target of the proinflammatory and atherogenic effects of TSH. In vitro experiments further revealed that TSH activated MAPKs (ERK1/2, p38α, and JNK) and IκB/p65 pathways in macrophages and increased inflammatory cytokine production and their recruitment of monocytes. Thus, the present study has elucidated the new mechanisms by which TSH, as an independent risk factor of atherosclerosis, aggravates vascular inflammation and contributes to atherogenesis.


The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target?

  • Jean-Louis Charli‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.


Semi-annual seasonal pattern of serum thyrotropin in adults.

  • Daniele Santi‎ et al.
  • Scientific reports‎
  • 2019‎

Circannual rhythmicity in thyroid-stimulating hormone (TSH) secretion is proposed, whereas evidences on seasonal peripheral thyroid hormones' fluctuation are contradictory. This study was designed to evaluate hypothalamic-pituitary-thyroid (HPT) seasonal secretion pattern using a big data approach. An observational, retrospective, big data trial was carried out, including all TSH measurements performed in a single laboratory between January 2010 and December 2017. A large dataset was created matching TSH data with patients' age, gender, environmental temperature exposure, and free triiodothyronine (fT3) and free thyroxine (fT4) when available. The trend and seasonal distributions were analysed using autoregressive integrated moving average models. A total of 1,506,495 data were included in the final database with patients mean age of 59.00 ± 18.44 years. The mean TSH serum levels were 2.08 ± 1.57 microIU/mL, showing a seasonal distribution with higher levels in summer and winter seasons, independently from age, gender and environmental temperatures. Neither fT3 nor fT4 showed a seasonal trend. TSH seasonal changes occurred independently from peripheral thyroid hormone variations, gender, age and environmental temperatures. Although seasonal TSH fluctuation could represent a residual ancestral mechanism to maintain HPT homeostasis, the underlying physiological mechanism remains unclear and specific studies are needed to clarify its impacting role in humans.


Tissue-specific posttranslational modification allows functional targeting of thyrotropin.

  • Keisuke Ikegami‎ et al.
  • Cell reports‎
  • 2014‎

Thyroid-stimulating hormone (TSH; thyrotropin) is a glycoprotein secreted from the pituitary gland. Pars distalis-derived TSH (PD-TSH) stimulates the thyroid gland to produce thyroid hormones (THs), whereas pars tuberalis-derived TSH (PT-TSH) acts on the hypothalamus to regulate seasonal physiology and behavior. However, it had not been clear how these two TSHs avoid functional crosstalk. Here, we show that this regulation is mediated by tissue-specific glycosylation. Although PT-TSH is released into the circulation, it does not stimulate the thyroid gland. PD-TSH is known to have sulfated biantennary N-glycans, and sulfated TSH is rapidly metabolized in the liver. In contrast, PT-TSH has sialylated multibranched N-glycans; in the circulation, it forms the macro-TSH complex with immunoglobulin or albumin, resulting in the loss of its bioactivity. Glycosylation is fundamental to a wide range of biological processes. This report demonstrates its involvement in preventing functional crosstalk of signaling molecules in the body.


Stimulation of orexin/hypocretin neurones by thyrotropin-releasing hormone.

  • J Antonio González‎ et al.
  • The Journal of physiology‎
  • 2009‎

Central orexin/hypocretin neurones are critical for sustaining consciousness: their firing stimulates wakefulness and their destruction causes narcolepsy. We explored whether the activity of orexin cells is modulated by thyrotropin-releasing hormone (TRH), an endogenous stimulant of wakefulness and locomotor activity whose mechanism of action is not fully understood. Living orexin neurones were identified by targeted expression of green fluorescent protein (GFP) in acute brain slices of transgenic mice. Using whole-cell patch-clamp recordings, we found that TRH robustly increased the action potential firing rate of these neurones. TRH-induced excitation persisted under conditions of synaptic isolation, and involved a Na(+)-dependent depolarization and activation of a mixed cation current in the orexin cell membrane. By double-label immunohistochemistry, we found close appositions between TRH-immunoreactive nerve terminals and orexin-A-immunoreactive cell bodies. These results identify a new physiological modulator of orexin cell firing, and suggest that orexin cell excitation may contribute to the arousal-enhancing actions of TRH.


Thyrotropin-releasing hormone increases GABA release in rat hippocampus.

  • Pan-Yue Deng‎ et al.
  • The Journal of physiology‎
  • 2006‎

Thyrotropin-releasing hormone (TRH) is a tripeptide that is widely distributed in the brain including the hippocampus where TRH receptors are also expressed. TRH has anti-epileptic effects and regulates arousal, sleep, cognition, locomotion and mood. However, the cellular mechanisms underlying such effects remain to be determined. We examined the effects of TRH on GABAergic transmission in the hippocampus and found that TRH increased the frequency of GABAA receptor-mediated spontaneous IPSCs in each region of the hippocampus but had no effects on miniature IPSCs or evoked IPSCs. TRH increased the action potential firing frequency recorded from GABAergic interneurons in CA1 stratum radiatum and induced membrane depolarization suggesting that TRH increases the excitability of interneurons to facilitate GABA release. TRH-induced inward current had a reversal potential close to the K+ reversal potential suggesting that TRH inhibits resting K+ channels. The involved K+ channels were sensitive to Ba2+ but resistant to other classical K+ channel blockers, suggesting that TRH inhibits the two-pore domain K+ channels. Because the effects of TRH were mediated via Galphaq/11, but were independent of its known downstream effectors, a direct coupling may exist between Galphaq/11 and K+ channels. Inhibition of the function of dynamin slowed the desensitization of TRH responses. TRH inhibited seizure activity induced by Mg2+ deprivation, but not that generated by picrotoxin, suggesting that TRH-mediated increase in GABA release contributes to its anti-epileptic effects. Our results demonstrate a novel mechanism to explain some of the hippocampal actions of TRH.


Molecular Insights into the Transmembrane Domain of the Thyrotropin Receptor.

  • Vanessa Chantreau‎ et al.
  • PloS one‎
  • 2015‎

The thyrotropin receptor (TSHR) is a G protein-coupled receptor (GPCR) that is member of the leucine-rich repeat subfamily (LGR). In the absence of crystal structure, the success of rational design of ligands targeting the receptor internal cavity depends on the quality of the TSHR models built. In this subfamily, transmembrane helices (TM) 2 and 5 are characterized by the absence of proline compared to most receptors, raising the question of the structural conformation of these helices. To gain insight into the structural properties of these helices, we carried out bioinformatics and experimental studies. Evolutionary analysis of the LGR family revealed a deletion in TM5 but provided no information on TM2. Wild type residues at positions 2.58, 2.59 or 2.60 in TM2 and/or at position 5.50 in TM5 were substituted to proline. Depending on the position of the proline substitution, different effects were observed on membrane expression, glycosylation, constitutive cAMP activity and responses to thyrotropin. Only proline substitution at position 2.59 maintained complex glycosylation and high membrane expression, supporting occurrence of a bulged TM2. The TSHR transmembrane domain was modeled by homology with the orexin 2 receptor, using a protocol that forced the deletion of one residue in the TM5 bulge of the template. The stability of the model was assessed by molecular dynamics simulations. TM5 straightened during the equilibration phase and was stable for the remainder of the simulations. Our data support a structural model of the TSHR transmembrane domain with a bulged TM2 and a straight TM5 that is specific of glycoprotein hormone receptors.


Immunohistochemical localization of thyrotropin-releasing hormone in the brain of reptiles.

  • Jesús M López‎ et al.
  • Journal of chemical neuroanatomy‎
  • 2008‎

To gain insight into the evolution of the thyrotropin-releasing hormone (TRH) system in the brain of vertebrates we have conducted a comparative analysis of the distribution of TRH immunoreactive cell bodies and fibers in two reptiles, the turtle Pseudemys scripta elegans and the lizard Gekko gecko. Double labeling for TRH and tyrosine hydroxylase, the main catecholamine marker, was made to help the correct localization of the labeled structures and to evaluate the possible interaction of these two systems. Cells containing TRH were found in the hypothalamic paraventricular and periventricular nuclei and their projections to the median eminence were corroborated. In addition, with some species variation, extrahypothalamic cells were present in the medial amygdala, mesencephalic tegmentum, descending vestibular nucleus and in the retina. Fiber labeling was observed in all main brain subdivisions but was more abundant in regions such as the striatum, septum, amygdaloid complex, dorsal thalamus and tegmento-reticular zones. Actual colocalization of TRH and catecholamines in the same neurons was not observed but the codistribution of cells and fibers labeled for TRH and tyrosine hydroxylase strongly suggests that they can interact in diverse regions, not only in the hypothalamo-hypophysial system. The comparison of the distribution of TRH immunoreactive neurons and fibers found in reptiles with those reported for other vertebrates reveals a strong resemblance but also notable variations, not only across vertebrate classes but also within the same class.


Effect of Thyrotropin Suppression Therapy on Bone in Thyroid Cancer Patients.

  • Maria Papaleontiou‎ et al.
  • The oncologist‎
  • 2016‎

The thyroid cancer incidence is rising. Despite current guidelines, controversy exists regarding the degree and duration of thyrotropin suppression therapy. Also, its potential skeletal effects remain a concern to physicians caring for thyroid cancer patients. We conducted a review of published data to evaluate existing studies focusing on the skeletal effects of thyrotropin suppression therapy in thyroid cancer patients.


Sensitivity of three thyrotropin receptor antibody assays in thyroid-associated orbitopathy.

  • Marija Sarić-Matutinović‎ et al.
  • Journal of medical biochemistry‎
  • 2022‎

Thyrotropin receptor autoantibodies (TSH-RAb) are indispensable biomarkers in the laboratory assessment of thyroid-associated orbitopathy (TAO). Clinical sensitivity of three different assays for TSH-R-Ab determination was evaluated in patients with TAO.


Causal Association Between Serum Thyrotropin and Obesity: A Bidirectional, Mendelian Randomization Study.

  • Xichang Wang‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2021‎

The association between serum thyrotropin (TSH) and obesity traits has been investigated previously in several epidemiological studies. However, the underlying causal association has not been established.


Characterization of Apparently Paradoxical Thyrotropin Binding Inhibitory Immunoglobulins With Neutral Bioactivity.

  • Tetsuya Tagami‎ et al.
  • Journal of the Endocrine Society‎
  • 2022‎

The thyrotropin (TSH) receptor (TSH-R) autoantibody activity is clinically measured by inhibition of labeled ligand (TSH or M22) binding to the TSH-R (TSH-binding inhibitory immunoglobulin [TBII]) or by stimulation (TSH-R stimulating antibody [TSAb]) or inhibition (TSH-R blocking antibody [TSBAb]) of 3',5'-cyclic adenosine 5'-monophosphate (cAMP) production in isolated cells.


Multiple Transduction Pathways Mediate Thyrotropin Receptor Signaling in Preosteoblast-Like Cells.

  • Alisa Boutin‎ et al.
  • Endocrinology‎
  • 2016‎

It has been shown that the TSH receptor (TSHR) couples to a number of different signaling pathways, although the Gs-cAMP pathway has been considered primary. Here, we measured the effects of TSH on bone marker mRNA and protein expression in preosteoblast-like U2OS cells stably expressing TSHRs. We determined which signaling cascades are involved in the regulation of IL-11, osteopontin (OPN), and alkaline phosphatase (ALPL). We demonstrated that TSH-induced up-regulation of IL-11 is primarily mediated via the Gs pathway as IL-11 was up-regulated by forskolin (FSK), an adenylyl cyclase activator, and inhibited by protein kinase A inhibitor H-89 and by silencing of Gαs by small interfering RNA. OPN levels were not affected by FSK, but its up-regulation was inhibited by TSHR/Gi-uncoupling by pertussis toxin. Pertussis toxin decreased p38 MAPK kinase phosphorylation, and a p38 inhibitor and small interfering RNA knockdown of p38α inhibited OPN induction by TSH. Up-regulation of ALPL expression required high doses of TSH (EC50 = 395nM), whereas low doses (EC50 = 19nM) were inhibitory. FSK-stimulated cAMP production decreased basal ALPL expression, whereas protein kinase A inhibition by H-89 and silencing of Gαs increased basal levels of ALPL. Knockdown of Gαq/11 and a protein kinase C inhibitor decreased TSH-stimulated up-regulation of ALPL, whereas a protein kinase C activator increased ALPL levels. A MAPK inhibitor and silencing of ERK1/2 inhibited TSH-stimulated ALPL expression. We conclude that TSH regulates expression of different bone markers via distinct signaling pathways.


Brain Delivery of Thyrotropin-Releasing Hormone via a Novel Prodrug Approach.

  • Katalin Prokai-Tatrai‎ et al.
  • Pharmaceutics‎
  • 2019‎

Using thyrotropin-releasing hormone (TRH) as a model, we explored whether synergistic combination of lipoamino acid(s) and a linker cleaved by prolyl oligopeptidase (POP) can be used as a promoiety for prodrug design for the preferential brain delivery of the peptide. A representative prodrug based on this design principle was synthesized, and its membrane affinity and in vitro metabolic stability, with or without the presence of a POP inhibitor, were studied. The in vivo formation of TRH from the prodrug construct was probed by utilizing the antidepressant effect of the peptide, as well as its ability to increase acetylcholine (ACh) synthesis and release. We found that the prototype prodrug showed excellent membrane affinity and greatly increased metabolic stability in mouse blood and brain homogenate compared to the parent peptide, yet a POP inhibitor completely prevented prodrug metabolism in brain homogenate. In vivo, administration of the prodrug triggered antidepressant-like effect, and microdialysis sampling showed greatly increased ACh release that was also antagonized upon a POP inhibitor treatment. Altogether, the obtained promising exploratory data warrant further investigations on the utility of the prodrug approach introduced here for brain-enhanced delivery of small peptides with neurotherapeutic potential.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: