Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Vitamin D, FOXO3a, and Sirtuin1 in Hashimoto's Thyroiditis and Differentiated Thyroid Cancer.

  • Natascha Roehlen‎ et al.
  • Frontiers in endocrinology‎
  • 2018‎

Background: Protective effects of vitamin D have been reported in autoimmune and malignant thyroid diseases, though little is known about the underlying mechanism. Sirtuin 1 histon deacethylase (SIRT1) links the vitamin D pathway with regulation of transcription factor FOXO3a, a key player in cell cycle regulation and apoptosis. Aim of the present study was to investigate common single nucleotide polymorphisms (SNP's) in FOXO3a gene in respect to thyroid diseases, as well as to evaluate the hypothesis of Sirtuin1-FOXO3a interaction being a mediator of anti-proliferative vitamin D effects. Methods: The SNP's FOXO3a rs4946936/rs4945816/rs9400239 were genotyped in 257 patients with differentiated thyroid carcinoma (DTC), 139 patients with Hashimoto thyroiditis (HT) and 463 healthy controls (HC). Moreover, T-helper cells of HC and papillary thyroid cancer cell line BCPAP were incubated with 1,25(OH)2D3 and/or SIRT1 inhibitor Ex-527 in order to elucidate SIRT1- dependent vitamin D effects on cell proliferation and FOXO3a gene expression in vitro. Results: Patients with DTC tended to carry more often allele C in FOXO3a rs4946936 in comparison to HC (pcorrected = pc = 0.08). FOXO3a rs9400239T and rs4945816C was more frequent in HT in comparison to HC (pc = 0.02 and pc = 0.01, respectively). In both DTC and HT, we could not find a correlation of FOXO3a SNP's with vitamin D status. However, on in vitro level, 1,25(OH)2D3 showed an anti-proliferative effect in both T-helper cells and BCPAP, that was blocked by SIRT1 inhibition (T-helper cells: p = 0.0059, BCPAP: p = 0.04) and accompanied by elevated FOXO3a gene expression in T-helper cells (p = 0.05). Conclusions: FOXO3a rs9400239T and rs4945816C may constitute risk factors for HT, independent of the vitamin D status.This indicates the implication of FOXO3a in pathogenesis of autoimmune thyroid diseases. The dependency of anti-proliferative vitamin D effects on SIRT1 activity further suggests a key role of vitamin D-SIRT1-FOXO3a axis for protective vitamin D effects.


Vascular Endothelial Growth Factor (VEGF) Induced Downstream Responses to Transient Receptor Potential Vanilloid 1 (TRPV1) and 3-Iodothyronamine (3-T1AM) in Human Corneal Keratocytes.

  • Ersal Türker‎ et al.
  • Frontiers in endocrinology‎
  • 2018‎

This study was undertaken to determine if crosstalk among the transient receptor potential (TRP) melastatin 8 (TRPM8), TRP vanilloid 1 (TRPV1), and vascular endothelial growth factor (VEGF) receptor triad modulates VEGF-induced Ca2+ signaling in human corneal keratocytes. Using RT-PCR, qPCR and immunohistochemistry, we determined TRPV1 and TRPM8 gene and protein coexpression in a human corneal keratocyte cell line (HCK) and human corneal cross sections. Fluorescence Ca2+ imaging using both a photomultiplier and a single cell digital imaging system as well as planar patch-clamping measured relative intracellular Ca2+ levels and underlying whole-cell currents. The TRPV1 agonist capsaicin increased both intracellular Ca2+ levels and whole-cell currents, while the antagonist capsazepine (CPZ) inhibited them. VEGF-induced Ca2+ transients and rises in whole-cell currents were suppressed by CPZ, whereas a selective TRPM8 antagonist, AMTB, increased VEGF signaling. In contrast, an endogenous thyroid hormone-derived metabolite 3-Iodothyronamine (3-T1AM) suppressed increases in the VEGF-induced current. The TRPM8 agonist menthol increased the currents, while AMTB suppressed this response. The VEGF-induced increases in Ca2+ influx and their underlying ionic currents stem from crosstalk between VEGFR and TRPV1, which can be impeded by 3-T1AM-induced TRPM8 activation. Such suppression in turn blocks VEGF-induced TRPV1 activation. Therefore, crosstalk between TRPM8 and TRPV1 inhibits VEGFR-induced activation of TRPV1.


Excessive Iodine Promotes Pyroptosis of Thyroid Follicular Epithelial Cells in Hashimoto's Thyroiditis Through the ROS-NF-κB-NLRP3 Pathway.

  • Jiameng Liu‎ et al.
  • Frontiers in endocrinology‎
  • 2019‎

Hashimoto's thyroiditis (HT) is a common autoimmune thyroid disease. In recent years, increasing evidence has proven that the incidence of HT is associated with the excessive iodine intake of the body. In the present study, we measured the status of pyroptosis in thyroid tissues from patients with HT and the effects of excessive iodine on the pyroptosis in thyroid follicular cells (TFCs), in an attempt to illuminate the effects of iodine excess on the development of HT disease. Our results showed that increased pyroptosis occurred in the thyroid tissues of HT patients and that an increase in pyroptosis activity in TFCs was primed by excessive iodine in vitro. This process was mediated by reactive oxygen species (ROS) and activation of the NF-κB signaling pathway. In addition, excessive iodine caused NLRP3 inflammasome activation in TFCs, which promoted TFC pyroptosis. Moreover, the release of interleukin-1β (IL-1β) was closely linked to pyroptosis activation. Taken together, our results suggested that excessive iodine contributed to aberrant activation of pyroptosis in TFCs, which could be a pivotal predisposing factor for HT development.


miR-29a-3p/T-bet Regulatory Circuit Is Altered in T Cells of Patients With Hashimoto's Thyroiditis.

  • Stana Tokić‎ et al.
  • Frontiers in endocrinology‎
  • 2018‎

Hashimoto's thyroiditis (HT) is a common autoimmune thyroid disorder that frequently evolves from asymptomatic, T-cell mediated chronic inflammation toward overt hypothyroidism. Previously, we have demonstrated a role for T-bet, a T helper 1/CD8+ T cell transcription factor (TF), and FoxP3, a regulatory T cell TF, in disease progression and severity, but the basis behind their altered mRNA expression remains unknown. In this study, we aimed to leverage the role for microRNAs, representing negative transcriptional regulators, across the spectrum of HT clinical presentations using the same, well-characterized RNA sample cohort.


Innate Immune-Modulatory Activity of Prunella vulgaris in Thyrocytes Functions as a Potential Mechanism for Treating Hashimoto's Thyroiditis.

  • Fei Chen‎ et al.
  • Frontiers in endocrinology‎
  • 2020‎

Prunella vulgaris (PV), a perennial herb, has been used to treat thyroid diseases in China for over 2,000 years. In particular, its therapeutic effect has been described for Hashimoto's thyroiditis, including reducing titers autoantibodies against thyroid peroxidase and thyroglobulin of and T helper 17 (Th17) cells. However, the underlying mechanism for how PV exerts such effects has not been investigated. We examined the effects of PV on innate immune activation, which is thought to be one of the triggers for the development of autoimmune diseases, including Hashimoto's thyroiditis. In cultured thyrocytes, PV reduced mRNA levels of inflammatory cytokines that were originally induced as a result of innate immune activation initiated by transfection of double-stranded DNA (dsDNA) or dsRNA. PV suppressed activation of nuclear factor κB (NF-κB) and interferon regulatory factor 3 (IRF3), and suppressed corresponding promoter activation, which were initially activated by dsDNA or dsRNA. PV also suppressed the mRNA levels of molecules responsible for antigen processing and presentation, and PV protected thyrocytes from apoptosis induced by dsDNA and dsRNA. Additionally, PV suppressed the expression of genes involved in iodide uptake and oxidation. Taken together, these results suggest that PV exerts its protective effect on thyrocytes by suppressing both innate and adaptive immune responses and cell death. PV may also protect cells from iodide-associated oxidative injury. This report is among the first to identify the mechanisms to explain PV's beneficial effects in Hashimoto's thyroiditis.


Expression and Role of the G Protein-Coupled Estrogen Receptor (GPR30/GPER) in the Development and Immune Response in Female Reproductive Cancers.

  • Christian David Hernández-Silva‎ et al.
  • Frontiers in endocrinology‎
  • 2020‎

Cancer is a major public health issue and represents the second leading cause of death in women worldwide, as female reproductive-related neoplasms are the main cause of incidence and mortality. Female reproductive cancers have a close relationship to estrogens, the principal female sex steroid hormones. Estrogens exert their actions by the nuclear estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). ERα, and ERβ act as transcription factors mediating genomic effects. Besides, the G protein-coupled estrogen receptor (GPER, formerly known as GPR30) was recently described as a seven-transmembrane receptor that mediates non-genomic estrogenic signaling, including calcium mobilization, cAMP synthesis, cleavage of matrix metalloproteinases, transactivation of epidermal growth factor receptor (EGFR), and the subsequent activation of PI3K and MAPK signaling pathways, which are the reasons why it is related to cellular processes, such as cell-cycle progression, cellular proliferation, differentiation, apoptosis, migration, and invasion. Since its discovery, selective agonists and antagonists have been found and developed. GPER has been implicated in a variety of hormone-responsiveness tumors, such as breast, endometrial, ovarian, cervical, prostate, and testicular cancer as well as lung, hepatic, thyroid, colorectal, and adrenocortical cancers. Nevertheless, GPER actions in cancer are still debatable due to the conflicting information that has been reported to date, since many reports indicate that activation of this receptor can modulate carcinogenesis. In contrast, many others show that its activation inhibits tumor activity. Besides, estrogens play an essential role in the regulation of the immune system, but little information exists about the role of GPER activation on its modulation within cancer context. This review focuses on the role that the stimulation of GPER plays in female reproductive neoplasms, specifically breast, endometrial, ovarian, and cervical cancers, in its tumor activity and immune response regulation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: