Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

A thymosin repeated protein1 reduces white spot syndrome virus replication in red claw crayfish Cherax quadricarinatus.

  • Dong-Li Li‎ et al.
  • Developmental and comparative immunology‎
  • 2018‎

The β-thymosins are a group of structurally related, highly conserved intracellular small peptides in vertebrates with various biological functions, including cytoskeletal remodeling, neuronal development, cell migration, cell survival, tissue repair and inhibition of inflammation. In contrast to vertebrates, the function of β-thymosin is not fully understood in crustaceans. Previously, we found that a thymosin-repeated protein1 (CqTRP1) gene was up-regulated after white spot syndrome virus (WSSV) challenge in hematopoietic tissue (Hpt) cells from the red claw crayfish Cherax quadricarinatus. To further identify the effect of CqTRP1 on WSSV infection, a full length cDNA sequence of β-thymosin homologue was cloned and analyzed from red claw crayfish followed by functional study. The CqTRP1 cDNA contains an open reading frame of 387 nucleotides encoding a protein of 129 amino acids with a putative molecular mass of 14.3 kDa. The amino acid sequence showed high identity with other β-thymosins and contained three characteristic thymosin β actin-binding motifs, suggesting that CqTRP1 was a member of the β-thymosin family. Tissue distribution analysis revealed a ubiquitous presence of CqTRP1 in all the examined tissues with the highest expression in hemocytes, Hpt and gonad at the transcriptional level. Interestingly, the gene silencing of endogenous CqTRP1 by RNAi enhanced the WSSV replication in Hpt cells. Meanwhile, the WSSV replication was significantly reduced in the Hpt cell cultures if overloaded with a recombinant CqTRP1. Taken together, these data clearly indicated that CqTRP1 was likely to be associated with the anti-WSSV response in a crustacean C. quadricarinatus, which provides new strategy against white spot disease in crustacean aquaculture.


Two thymosin-repeated molecules with structural and functional diversity coexist in Chinese mitten crab Eriocheir sinensis.

  • Yunchao Gai‎ et al.
  • Developmental and comparative immunology‎
  • 2009‎

Recently, beta-thymosin-like proteins with multiple thymosin domains (defined as thymosin-repeated proteins) have been identified from invertebrate. In the present study, the cDNAs of two thymosin-repeated proteins (designated EsTRP1 and EsTRP2) were cloned from Chinese mitten crab by expressed sequence tags (EST) techniques. BLAST analysis presented three and two thymosin domains in EsTRP1 and EsTRP2, respectively, with the identities amongst the five domains varying from 47% to 100%. Both EsTRP1 and EsTRP2 shared high similarities with previously identified vertebrate beta-thymosins and invertebrate thymosin-repeated proteins (TRPs) with the identities ranging from 43% to 78%, indicating that EsTRPs were new members of the beta-thymosin family. Real-time RT-PCR assay was adopted to determine the tissue distribution of EsTRPs and their temporal expression profile in hemocytes after pathogen stimulation and injury challenge. The expression of EsTRP1 transcript was predominantly detectable in the tissues of hemocytes, hepatopancreas and gonad with the highest expression in hemocytes, while the highest expression level of EsTRP2 was found in heart. EsTRP1 mRNA expression in hemocytes significantly increased at 3 and 48h after Listonella anguillarum challenge, but there was no significant variation in EsTRP2 temporal expression profile. The injury challenge reduced the mRNA expression of EsTRPs, with the down-regulation of EsTRP2 expression occurred earlier than that of EsTRP1. The cDNA fragments encoding their mature peptides of EsTRP1 and EsTRP2 were recombined and expressed in Escherichia coli. The activities of recombinant proteins (rEsTRP1 and rEsTRP2) were examined by MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide) and lysoplate assay. rEsTRP2 could significantly accelerate the growth of human hepatocellular carcinoma cell line, but there was no significant effect of rEsTRP1 on the tumor cell proliferation. Both rEsTRP1 and rEsTRP2 did not possess the ability of killing Micrococcus luteus and L. anguillarum. The differences in the tissue distribution of mRNA transcripts, the response to pathogen stimulation and injury challenge, and the effect of recombinant proteins on human cell proliferation, indicated that there were functional diversity between the two structurally different molecules, EsTRP1 and EsTRP2.


β-Thymosins participate in antiviral immunity of red swamp crayfish (Procambarus clarkii).

  • Xiu-Zhen Shi‎ et al.
  • Developmental and comparative immunology‎
  • 2015‎

β-Thymosins participate in numerous biological activities, including cell proliferation and differentiation, wound healing, and anti-inflammatory and antimicrobial activities. Many studies have investigated vertebrate β-thymosins, whereas few reports have focused on invertebrate β-thymosins. In this study, nine isoforms of β-thymosins (PcThy-1 to PcThy-8) were identified from the red swamp crayfish Procambarus clarkii. The isoforms contained different numbers of the thymosin β actin-binding motif. PcThy-1 contained one thymosin β actin-binding motif, whereas PcThy-8 contained eight motifs. Western blot analysis with anti-PcThy-4 antibody showed that three to six isoforms were present in one tissue, and PcThy-4, PcThy-5, PcThy-6, and PcThy-7 were the main isoforms in several tissues. Time course expression analysis of PcThys at the protein level showed that PcThy-4 was upregulated in hemocytes and gills after white spot syndrome virus (WSSV) challenge. PcThy-4, which contained four thymosin β actin-binding motifs, was selected for further research. Tissue distribution analysis by quantitative real-time PCR showed that PcThy-4 was present in tissues of the hemocytes, heart, hepatopancreas, gills, stomach, and intestine at the transcriptional level. Transcriptional expression profiles showed that PcThy-4 was upregulated after WSSV challenge. In vivo RNAi and protein injection assay results showed that PcThy-4 inhibited the replication of WSSV in crayfish and enhanced the survival rate after WSSV infection. Furthermore, PcThy-4 promoted hemocyte phagocytosis of WSSV. Overall, results suggested that PcThys protected crayfish from WSSV infection and played an important role in antiviral immune response.


Differentially expressed genes that encode potential markers of goldfish macrophage development in vitro.

  • Daniel R Barreda‎ et al.
  • Developmental and comparative immunology‎
  • 2004‎

Primary kidney macrophage (PKM) cultures derived from goldfish hematopoietic tissues develop from early progenitors to mature macrophages in response to endogenous growth factor(s). When grown in vitro, PKM shift from a proliferative phase, where most of the proliferation and differentiation events take place, to a senescence phase, where there is cessation of proliferation and differentiation events and ultimately cell death through a process of apoptosis. The phenotypic changes of PKM from the proliferative to senescence phase are a reflection of specific changes in gene expression; therefore, comparison of gene expression patterns between the two phases should lead to the identification of macrophage genes directly involved in the positive and negative regulation of hematopoietic events, as well as genes that are modulated downstream from these regulatory points. Differential cross-screening of the proliferative phase PKM cDNA library using proliferative and senescence phase (32)P-labeled cDNA probes identified several differentially expressed genes. Specifically, initial screen of 9200 clones yielded 734 differential primary clones that were isolated and analyzed using a PCR-based secondary screen. The majority of these clone isolates encoded a single transcript as determined by PCR amplification of the primary clones. The secondary screen confirmed the differential expression of 306 clones (3.32% of the total number of screened clones). Two hundred and forty four clones were sequenced; 158 and 86 were preferentially expressed during proliferative and senescence phases, respectively. Several potential candidates of fish macrophage hematopoiesis were identified. These include, for example, zinc finger protein 147, nucleophosmin, 14-3-3 protein, adenine nucleotide translocator 2 (ANT2), granulin, survivin-1, and apoptosis inhibitor-5. In addition, several potential markers of macrophage differentiation and/or function were identified and their expression patterns characterized across three distinct stages of macrophage development in vitro. These include legumain, CD63, interferon-inducible protein, macrosialin (CD68), transcription factor MafB, and the molecular chaperone BiP/GRP78. These analyses will facilitate future characterization of macrophage developmental events by providing a more global perspective of various facets of macrophage hematopoiesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: