Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Construction, expression, and characterization of thymosin alpha 1 tandem repeats in Escherichia coli.

  • Xiao-Chang Xue‎ et al.
  • BioMed research international‎
  • 2013‎

Thymosin alpha 1 (T α 1), which is composed of 28 amino acids, has been commercialized worldwide for its immune-modulatory and antitumor effects. T α 1 can stimulate T cell proliferation and differentiation from bone marrow stem cells, augment cell-mediated immune responses, and regulate homeostasis of immune system. In this study, we developed a novel strategy to produce T α 1 concatemer (T α 1③) in Escherichia coli and compared its activity with chemically synthesized T α 1. Results showed that T α 1③ can more effectively stimulate T cell proliferation and significantly upregulate IL-2 receptor expression. We concluded that the expression system for T α 1 concatemer was constructed successfully, which could serve as an efficient tool for the production of large quantities of the active protein.


A Tobacco-Derived Thymosin β4 Concatemer Promotes Cell Proliferation and Wound Healing in Mice.

  • Rylosona Janarthini‎ et al.
  • BioMed research international‎
  • 2016‎

Thymosin β4 (Tβ4) is a peptide that is known to play important roles in protection, regeneration, and remodeling of injured tissues in humans, and that shows great promise in a range of clinical applications. However, current strategies to Tβ4 are insufficient to meet growing demand and have a number of limitations. In this current study we investigated whether expression of recombinant Tβ4 in plants, specifically in tobacco (Nicotiana tabacum) leaves, represents an effective approach. To address this question, a 168 bp Tβ4 gene optimized for tobacco codon usage bias was constitutively expressed in tobacco as a 4-unit repeat concatemer, fused to a polyhistidine tag. Quantitative polymerase chain reaction and Western blot analyses were used to verify 4×Tβ4 expression in 14 transgenic tobacco lines and enzyme-linked immunosorbent assay analysis indicated 4×Tβ4 protein concentrations as high as 3 μg/g of fresh weight in the leaves. We observed that direct administration of tobacco-derived Tβ4 was more effective than Tβ4 either obtained commercially or derived from expression in Escherichia coli at promoting splenocyte proliferation in vitro and wound healing in mice through an endothelial migration assay. This study provides new insights into the development of plant-derived therapeutic proteins and their application by direct administration.


The Escherichia coli-derived thymosin β4 concatemer promotes cell proliferation and healing wound in mice.

  • Xiaolei Wang‎ et al.
  • BioMed research international‎
  • 2013‎

Thymosin β4 (Tβ4) is one of the most promising thymosins for future clinical applications, and it is anticipated that commercial demand for Tβ4 will increase. In order to develop a new approach to produce recombinant Tβ4, a 168 bp DNA (termed Tβ4) was designed based on the Tβ4 protein sequence and used to express a 4 × Tβ 4 concatemer (four tandem copies of Tβ4, termed 4 × Tβ4) together with a histidine tag (6 × His) in E. coli (strain BL21). SDS-PAGE and western blot analysis were used to confirm that a recombinant 4 × Tβ4 protein of the expected size (30.87 kDa) was produced following the induction of the bacterial cultures with isopropyl β-D-thiogalactoside (IPTG). The E. coli-derived 4 × Tβ4 was purified by Ni-NTA resin, and its activities were examined with regard to both stimulating proliferation of the mice spleen cells in vitro and in vivo wound healing. The results demonstrate that these activities of the E. coli-derived recombinant 4 × Tβ4 were similar or even better than existing commercially obtained Tβ4. This production strategy therefore represents a potentially valuable approach for future commercial production of recombinant Tβ4.


The Efficacy and Immunomodulatory Effects of Ulinastatin and Thymosin α1 for Sepsis: A Systematic Review and Meta-Analysis.

  • Feng Yun Wang‎ et al.
  • BioMed research international‎
  • 2016‎

Objective. To systematically review the efficacy and potential immunomodulatory effect of ulinastatin combined with thymosin α1 (UTI) for sepsis. Design. A systematic review and meta-analysis of randomized controlled trials (RCTs). Data Sources. The following databases: PubMed, Embase, and Cochrane Central were searched to identify related clinical trials. The search terms were "ulinastatin", "thymosin", and "sepsis". Results. Six RCTs, 944 septic patients in total, were included in this meta-analysis. The result shows UTI increased the 28-day survival rate of septic patients, odds ratio (OR) = 2.01, 95% CI [1.53, 2.64]. After the treatment with UTI, the APACHE II score (four studies) dropped 4.72 further, mean = -4.72, 95% CI [-6.54, -2.91] (p < 0.00001). The mean time of ICU stay (four studies) in UTI group decreased 3.03 days further, mean = -3.03 [-6.99, 0.95] (p = 0.14), and mechanical ventilation time (four studies) decreased 2.05 days, mean = -1.81 [-2.96, -0.66] (p = 0.002). With the treatment of UTI, CD4+T cells raised 5.13%, mean = 5.13, 95% CI [2.75, 7.50] (p < 0.0001); there was no significant change in CD8+T cells, mean = -0.74 [-2.93, 1.45] (p = 0.51). Conclusion. According to this meta-analysis, with the treatment of UTI, the short-term survival rate of septic patients was increased and the illness severity was alleviated. ICU stay and mechanical ventilation time were effectively shortened. The beneficial effect of UTI might be due to the potential immunomodulatory effects of these two drugs.


An Investigation on the Therapeutic Effect of Thymosin β4 and Its Expression Levels in Streptozotocin-Induced Diabetic Mice.

  • Kyung Sook Cho‎ et al.
  • BioMed research international‎
  • 2018‎

Thymosin β4 (Tβ4) treatment was known to show the potential therapeutic effects on diabetic complications. This study was performed to determine if Tβ4 expression is changed in both serum and tissues under diabetic conditions and can be a serum biomarker. Type 1 diabetic mice were induced in C57/BL6J mice by intraperitoneal injection of streptozotocin (STZ) at a dose of 50 mg/kg body weight. The mice were sacrificed at 16 weeks after STZ injection. Tissues and plasmas were obtained to determine the expression levels of Tβ4 using ELISA, real time RT-PCR, and immunohistochemistry. The average serum glucose level was increased to approximately 400 mg/dL beginning 2 weeks after the five injections of STZ and lasting for at least 13 weeks until sacrifice. The plasma and tissue levels of Tβ4 in the age-matched control mice were not significantly different from those of the diabetic mice. In conclusion, the Tβ4 expression level in the plasmas and tissues of diabetic mice was not affected by diabetic conditions. It indirectly suggests that the therapeutic effect of Tβ4 on diabetic complications is due to its regenerative effects on damaged tissue but not to the changed expression level of Tβ4 in plasma and tissues of diabetes.


Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts.

  • Shiva Marthandan‎ et al.
  • BioMed research international‎
  • 2015‎

Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes being cell line specific. Clustering-based approaches further revealed common signatures between the cell lines. Investigation of the mRNA expression levels at various time points during the lifespan of either of the fibroblasts resulted in a number of monotonically up- and downregulated genes which clearly showed a novel strong link to aging and senescence related processes which might be functional. In terms of expression profiles of differentially expressed genes with age, common genes identified here have the potential to rule the transition into senescence of embryonic lung and foreskin fibroblasts irrespective of their different cellular origin.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: