Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Synthesis and biological evaluation of a new acyclic pyrimidine derivative as a probe for imaging herpes simplex virus type 1 thymidine kinase gene expression.

  • Andrijana Meščić‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2013‎

With the idea of finding a more selective radiotracer for imaging herpes simplex virus type 1 thymidine kinase (HSV1-tk) gene expression by means of positron emission tomography (PET), a novel [¹⁸F]fluorine radiolabeled pyrimidine with 4-hydroxy-3-(hydroxymethyl)butyl side chain at N-1 (HHB-5-[¹⁸F]FEP) was prepared and evaluated as a potential PET probe. Unlabeled reference compound, HHB-5-FEP, was synthesized via a five-step reaction sequence starting from 5-(2-acetoxyethyl)-4-methoxypyrimidin-2-one. The radiosynthesis of HHB-[¹⁸F]-FEP was accomplished by nucleophilic radiofluorination of a tosylate precursor using [¹⁸F]fluoride-cryptate complex in 45% ± 4 (n = 4) radiochemical yields and high purity (>99%). The biological evaluation indicated the feasibility of using HHB-5-[¹⁸F]FEP as a PET radiotracer for monitoring HSV1-tk expression in vivo.


Synthesis, Antiviral and Cytotoxic Activity of Novel Terpenyl Hybrid Molecules Prepared by Click Chemistry.

  • Mariano Walter Pertino‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Naturally occurring terpenes were combined by click reactions to generate sixteen hybrid molecules. The diterpene imbricatolic acid (IA) containing an azide group was used as starting compound for the synthesis of all the derivatives. The alkyne group in the terpenes cyperenoic acid, dehydroabietinol, carnosic acid γ-lactone, ferruginol, oleanolic acid and aleuritolic acid was obtained by esterification using appropriate alcohols or acids. The hybrid compounds were prepared by combining the IA azide function with the different terpene-alkynes under click chemistry conditions. The cytotoxic activity of the terpene hybrids 1⁻16 was assessed against Vero cells and tumour cell lines (HEP-2, C6 and Raw 264.7). Compounds 1, 2, 3 and 7 showed cytotoxic activity against the tested cell lines. The antiviral activity of the compounds was evaluated against HSV-1 KOS, Field and B2006 strain. For the pairs of hybrid compounds formed between IA-diterpene (compounds 3⁻8, except for compound 7), a moderate activity was observed against the three HSV-1 strains with an interesting selectivity index (SI ≥10, SI = CC50/CE50) for some compounds.


Isoxazolidine Conjugates of N3-Substituted 6-Bromoquinazolinones-Synthesis, Anti-Varizella-Zoster Virus, and Anti-Cytomegalovirus Activity.

  • Magdalena Grabkowska-Drużyc‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

1,3-Dipolar cycloaddition of N-methyl C-(diethoxyphosphoryl) nitrone to N3-substituted 6-bromo-2-vinyl-3H-quinazolin-4-ones gave (3-diethoxyphosphoryl) isoxazolidines substituted at C5 with quinazolinones modified at N3. All isoxazolidine cycloadducts were screened for antiviral activity against a broad spectrum of DNA and RNA viruses. Several isoxazolidines inhibited the replication of both thymidine kinase wild-type and deficient (TK⁺ and TK-) varicella-zoster virus strains at EC50 in the 5.4⁻13.6 μΜ range, as well as human cytomegalovirus (EC50 = 8.9⁻12.5 μΜ). Isoxazolidines trans-11b, trans-11c, trans-11e, trans-11f/cis-11f, trans-11g, trans-11h, and trans-11i/cis-11i exhibited moderate cytostatic activity towards the human lymphocyte cell line CEM (IC50 = 9.6⁻17 μM).


Synthesis and the Biological Activity of Phosphonylated 1,2,3-Triazolenaphthalimide Conjugates.

  • Iwona E Głowacka‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

A novel series of diethyl {4-[(5-substituted-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl)-methyl]-1H-1,2,3-triazol-1-yl}alkylphosphonates designed as analogues of amonafide was synthesized. All phosphonates were assessed for antiviral activity against a broad range of DNA and RNA viruses and several of them showed potency against varicella-zoster virus (VZV) [EC50 (50% effective concentration) = 27.6-91.5 μM]. Compound 16b exhibited the highest activity against a thymidine kinase-deficient (TK-) VZV strain (EC50 = 27.59 μM), while 16d was the most potent towards TK⁺ VZV (EC50 = 29.91 μM). Cytostatic properties of the compounds 14a-i-17a-i were studied on L1210, CEM, HeLa and HMEC-1 cell lines and most of them were slightly cytostatic for HeLa [IC50 (50% inhibitory concentration) = 29-130 µM] and L1210 cells [IC50 (50% inhibitory concentration) = 14-142 µM].


Synthesis of Sugar and Nucleoside Analogs and Evaluation of Their Anticancer and Analgesic Potentials.

  • Fahad Hussain‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Chemical modification of sugars and nucleosides has a long history of producing compounds with improved selectivity and efficacy. In this study, several modified sugars (2-3) and ribonucleoside analogs (4-8) have been synthesized from α-d-glucose in a total of 21 steps. The compounds were tested for peripheral anti-nociceptive characteristics in the acetic acid-induced writhing assay in mice, where compounds 2, 7, and 8 showed a significant reduction in the number of writhes by 56%, 62%, and 63%, respectively. The compounds were also tested for their cytotoxic potential against human HeLa cell line via trypan blue dye exclusion test followed by cell counting kit-8 (CCK-8) assay. Compound 6 demonstrated significant cytotoxic activity with an IC50 value of 54 µg/mL. Molecular docking simulations revealed that compounds 2, 7, and 8 had a comparable binding affinity to cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) enzymes. Additionally, the bridged nucleoside analogs 7 and 8 potently inhibited adenosine kinase enzyme as well, which indicates an alternate mechanistic pathway behind their anti-nociceptive action. Cytotoxic compound 6 demonstrated strong docking with cancer drug targets human cytidine deaminase, proto-oncogene tyrosine-protein kinase Src, human thymidine kinase 1, human thymidylate synthase, and human adenosine deaminase 2. This is the first ever reporting of the synthesis and analgesic property of compound 8 and the cytotoxic potential of compound 6.


Flubendiamide Enhances Adipogenesis and Inhibits AMPKα in 3T3-L1 Adipocytes.

  • Quancai Sun‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

Flubendiamide, a ryanoid class insecticide, is widely used in agriculture. Several insecticides have been reported to promote adipogenesis. However, the potential influence of flubendiamide on adipogenesis is largely unknown. The current study was therefore to determine the effects of flubendiamide on adipogenesis utilizing the 3T3-L1 adipocytes model. Flubendiamide treatment not only enhanced triglyceride content in 3T3-L1 adipocytes, but also increased the expression of cytosine-cytosine-adenosine-adenosine-thymidine (CCAAT)/enhancer-binding protein α and peroxisome proliferator-activated receptor gamma-γ, two important regulators of adipocyte differentiation. Moreover, the expression of the most important regulator of lipogenesis, acetyl coenzyme A carboxylase, was also increased after flubendiamide treatment. Further study revealed that 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or A769662, two Adenosine 5'-monophosphate (AMP)-activated protein kinase α activators, subverted effects of flubendiamide on enhanced adipogenesis. Together, these results suggest that flubendiamide promotes adipogenesis via an AMPKα-mediated pathway.


Natural Products and Their Derivatives against Human Herpesvirus Infection.

  • Chattarin Ruchawapol‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Herpesviruses establish long-term latent infection for the life of the host and are known to cause numerous diseases. The prevalence of viral infection is significantly increased and causes a worldwide challenge in terms of health issues due to drug resistance. Prolonged treatment with conventional antiviral drugs is more likely to develop drug-resistant strains due to mutations of thymidine nucleoside kinase or DNA polymerase. Hence, the development of alternative treatments is clearly required. Natural products and their derivatives have played a significant role in treating herpesvirus infection rather than nucleoside analogs in drug-resistant strains with minimal undesirable effects and different mechanisms of action. Numerous plants, animals, fungi, and bacteria-derived compounds have been proved to be efficient and safe for treating human herpesvirus infection. This review covers the natural antiherpetic agents with the chemical structural class of alkaloids, flavonoids, terpenoids, polyphenols, anthraquinones, anthracyclines, and miscellaneous compounds, and their antiviral mechanisms have been summarized. This review would be helpful to get a better grasp of anti-herpesvirus activity of natural products and their derivatives, and to evaluate the feasibility of natural compounds as an alternative therapy against herpesvirus infections in humans.


Design, Synthesis, Anti-Varicella-Zoster and Antimicrobial Activity of (Isoxazolidin-3-yl)Phosphonate Conjugates of N1-Functionalised Quinazoline-2,4-Diones.

  • Magdalena Łysakowska‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Dipolar cycloaddition of the N-substituted C-(diethoxyphosphonyl)nitrones with N3-allyl-N1-benzylquinazoline-2,4-diones produced mixtures of diastereoisomeric 3-(diethoxyphosphonyl)isoxazolidines with a N1-benzylquinazoline-2,4-dione unit at C5. The obtained compounds were assessed for antiviral and antibacterial activities. Several compounds showed moderate inhibitory activities against VZV with EC50 values in the range of 12.63-58.48 µM. A mixture of isoxazolidines cis-20c/trans-20c (6:94) was found to be the most active against B. cereus PCM 1948, showing an MIC value 0.625 mg/mL, and also was not mutagenic up to this concentration.


Flavonoids from Acer okamotoanum Inhibit Adipocyte Differentiation and Promote Lipolysis in the 3T3-L1 Cells.

  • Ji Hyun Kim‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Flavonoids, quercitrin, isoquercitrin (IQ), and afzelin, were isolated from ethyl acetate fraction of Acer okamotoanum. We investigated anti-obesity effects and mechanisms of three flavonoids from A. okamotoanum in the differentiated 3T3-L1 cells. The differentiated 3T3-L1 cells increased triglyceride (TG) contents, compared with non-differentiated normal group. However, treatments of three flavonoids from A. okamotoanum decreased TG contents without cytotoxicity. In addition, they showed significant down-regulation of several adipogenic transcription factors, such as γ-cytidine-cytidine-adenosine-adenosine-thymidine/enhancer binding protein -α, -β, and peroxisome proliferator-activated receptor-γ, compared with non-treated control group. Furthermore, treatment of the flavonoids inhibited expressions of lipogenesis-related proteins including fatty acid synthase, adipocyte protein 2, and glucose transporter 4. Moreover, IQ-treated group showed significant up-regulation of lipolysis-related proteins such as adipose triglyceride lipase and hormone-sensitive lipase. In addition, flavonoids significantly activated 5'-adenosine monophosphate-activated protein kinase (AMPK) compared to control group. In particular, IQ showed higher inhibition of TG accumulation by regulation of pathways related with both adipogenesis and lipolysis, than other flavonoids. The present results indicated that three flavonoids of A. okamotoanum showed anti-obesity activity by regulation of adipocyte differentiation, lipolysis, and AMPK signaling, suggesting as an anti-obesity functional agents.


Docking and antiherpetic activity of 2-aminobenzo[de]-isoquinoline-1,3-diones.

  • Rashad Al-Salahi‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2015‎

As part of our search for new compounds having antiviral effects, the prepared 2-aminonaphthalimide series was examined for its activity against the herpes simplex viruses HSV-1 and HSV-2. This represents the first study of the antiviral effects of this class of compounds. The new series of 2-amino-1H-benzo[de]isoquinoline-1,3-diones was examined against HSV-1 and HSV-2 using a cytopathic effect inhibition assay. In terms of effective concentration (EC50), furaldehyde, thiophene aldehyde and allyl isothiocyanide derivatives 14‒16 showed potent activity against HSV-1 (EC50 = 19.6, 16.2 and 17.8 μg/mL), compared to acyclovir as a reference drug (EC50 = 1.8 μg/mL). Moreover, 14 and 15 were found to exhibit valuable activity against HSV-2. Many of the tested compounds demonstrated weak to moderate EC50 values relative to their inactive parent compound (2-amino-1H-benzo[de]isoquinoline-1,3-dione), while compounds 7, 9, 13, 14, 15, 16, 21 and 22 were the most active set of antiviral compounds throughout this study. The cytotoxicity (CC50), EC50, and the selectivity index (SI) values were determined. In a molecular docking study, the ligand-receptor interactions of compounds 1-24 and their parent with the HSV-1 thymidine kinase active site were investigated using the Molegro Virtual Docker (MVD) software. Based on the potent anti-HSV properties of the previous naphthalimide condensate products, further exploration of this series of 2-amino-1H-benzo[de]isoquinoline-1,3-diones is warranted.


Polymeric Nanovectors Incorporated with Ganciclovir and HSV-tk Encoding Plasmid for Gene-Directed Enzyme Prodrug Therapy.

  • Alicia J Sawdon‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

In the area of gene-directed enzyme prodrug therapy (GDEPT), using herpes simplex virus thymidine kinase (HSV-tk) paired with prodrug ganciclovir (GCV) for cancer treatment has been extensively studied. It is a process involved with two steps whereby the gene (HSV-tk) is first delivered to malignant cells. Afterward, non-toxic GCV is administered to that site and activated to cytotoxic ganciclovir triphosphate by HSV-tk enzyme expressed exogenously. In this study, we presented a one-step approach that both gene and prodrug were delivered at the same time by incorporating them with polymeric micellar nanovectors. GCV was employed as an initiator in the ring-opening polymerization of ε-caprolactone (ε-CL) to synthesize hydrophobic GCV-poly(caprolactone) (GCV-PCL), which was furthered grafted with hydrophilic chitosan to obtain amphiphilic polymer (GCV-PCL-chitosan) for the fabrication of self-assembled micellar nanoparticles. The synthesized amphiphilic polymer was characterized using Fourier transform infrared spectroscopy and proton nuclear magnetic resonance. Micellar prodrug nanoparticles were analyzed by dynamic light scattering, zeta potential, critical micelle concentration, and transmission electron microscopy. Polymeric prodrug micelles with optimal features incorporated with HSV-tk encoding plasmids were cultivated with HT29 colorectal cancer cells and anticancer effectiveness was determined. Our results showed that prodrug GCV and HSV-tk cDNA encoded plasmid incorporated in GCV-PCL-chitosan polymeric nanocarriers could be delivered in a one-step manner to HT-29 cells and triggered high cytotoxicity.


Bridging the Chemical Profiles and Biological Effects of Spathodea campanulata Extracts: A New Contribution on the Road from Natural Treasure to Pharmacy Shelves.

  • Łukasz Świątek‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

Spathodea campanulata is an important medicinal plant with traditional uses in the tropical zone. In the current work, we aimed to determine the chemical profiles and biological effects of extracts (methanolic and infusion (water)) from the leaves and stem bark of S. campanulata. The chemical components of the tested extracts were identified using LC-ESI-QTOF-MS. Biological effects were tested in terms of antioxidant (radical scavenging, reducing power, and metal chelating), enzyme inhibitory (cholinesterase, amylase, glucosidase, and tyrosinase), antineoplastic, and antiviral activities. Fifty-seven components were identified in the tested extracts, including iridoids, flavonoids, and phenolic acids as the main constituents. In general, the leaves-MeOH extract was the most active in the antioxidant assays (DPPH, ABTS, CUPRAC, FRAP, metal chelating, and phosphomolybdenum). Antineoplastic effects were tested in normal (VERO cell line) and cancer cell lines (FaDu, HeLa, and RKO). The leaf infusion, as well as the extracts obtained from stem bark, showed antineoplastic activity (CC50 119.03-222.07 µg/mL). Antiviral effects were tested against HHV-1 and CVB3, and the leaf methanolic extract (500 µg/mL) exerted antiviral activity towards HHV-1, inhibiting the viral-induced cytopathic effect and reducing the viral infectious titre by 5.11 log and viral load by 1.45 log. In addition, molecular docking was performed to understand the interactions between selected chemical components and viral targets (HSV-1 DNA polymerase, HSV-1 protease, and HSV-1 thymidine kinase). The results presented suggest that S. campanulata may be a bright spot in moving from natural sources to industrial applications, including novel drugs, cosmeceuticals, and nutraceuticals.


Structure Identification and Anti-Cancer Pharmacological Prediction of Triterpenes from Ganoderma lucidum.

  • Yanyan Shao‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

Ganoderma triterpenes (GTs) are the major secondary metabolites of Ganoderma lucidum, which is a popularly used traditional Chinese medicine for complementary cancer therapy. In the present study, systematic isolation, and in silico pharmacological prediction are implemented to discover potential anti-cancer active GTs from G. lucidum. Nineteen GTs, three steroids, one cerebroside, and one thymidine were isolated from G. lucidum. Six GTs were first isolated from the fruiting bodies of G. lucidum, including 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid methyl ester (1), 3β,7β,15β-trihydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (2), 3β,7β,15α,28-tetrahydroxy-11,23-dioxo-lanost-8,16-dien-26-oic acid (3), ganotropic acid (4), 26-nor-11,23-dioxo-5α-lanost-8-en-3β,7β,15α,25-tetrol (5) and (3β,7α)-dihydroxy-lanosta-8,24-dien- 11-one (6). (4E,8E)-N-d-2'-hydroxypalmitoyl-l-O-β-d-glucopyranosyl-9-methyl-4,8-spingodienine (7), and stigmasta-7,22-dien-3β,5α,6α-triol (8) were first reported from the genus Ganodema. By using reverse pharmacophoric profiling of the six GTs, thirty potential anti-cancer therapeutic targets were identified and utilized to construct their ingredient-target interaction network. Then nineteen high frequency targets of GTs were selected from thirty potential targets to construct a protein interaction network (PIN). In order to cluster the pharmacological activity of GTs, twelve function modules were identified by molecular complex detection (MCODE) and gene ontology (GO) enrichment analysis. The results indicated that anti-cancer effect of GTs might be related to histone acetylation and interphase of mitotic cell cycle by regulating general control non-derepressible 5 (GCN5) and cyclin-dependent kinase-2 (CDK2), respectively. This research mode of extraction, isolation, pharmacological prediction, and PIN analysis might be beneficial to rapidly predict and discover pharmacological activities of novel compounds.


Cannabinoid and Opioid Receptor Affinity and Modulation of Cancer-Related Signaling Pathways of Machaeriols and Machaeridiols from Machaerium Pers.

  • Ilias Muhammad‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Machaeriols and machaeridiols are unique hexahydrodibenzopyran-type aralkyl phytocannabinoids isolated from Machaerium Pers. Earlier studies of machaeriol A (1) and B (2) did not show any affinity for cannabinoid receptor 1 (CB1 or CNR1), although they are structural analogs of psychoactive hexahydrocannabinol. This study comprehensively reports on the affinities of isolated Machaerium Pers. compounds, namely machaeriol A-D (1-4) and machaeridiol A-C (5-7), against cannabinoid (CB1 and CB2) and opioid (κ, δ and µ) receptors. Among the isolated compounds, machaeriol D (4) and machaeridiol A-C (5-7) showed some selective binding affinity for the CB2 receptor, using a radioligand binding assay, with Ki values of >1.3, >1.77, >2.18 and >1.1 μM, respectively. On the other hand, none of the compounds showed any binding to the CB1 receptor. Due to recent reports on the anticancer potential of the endocannabinoid system, compounds 1-7 were tested against a battery of luciferase reporter gene vectors that assess the activity of many cancer-related signaling pathways, including Stat3, Smad2/3, AP-1, NF-κB, E2F, Myc, Ets, Notch, FoxO, Wnt, Hedgehog and pTK in HeLa and T98G glioblastoma cells. Complete dose-response curves have been determined for each compound in both of these cell lines, which revealed that machaeridiol 6 displayed activities (IC50 in µM in HeLa and T98G cells) towards Stat3 (4.7, 1.4), Smad2/3 (1.2, 3.0), AP-1 (5.9, 4.2), NF-κB (0.5, 4.0), E2F (5.7, 0.7), Myc (5.3, 2.0), ETS (inactive, 5.9), Notch (5.3, 4.6), Wnt (4.2, inactive) and Hedgehog (inactive, 5.0). Furthermore, a combination study between machaeriol C (3) and machaeridiol B (6) displayed additive effects for E2F, ETS, Wnt and Hedgehog pathways, where these compounds individually were either minimally active or inactive. None of the compounds inhibited luciferase expression driven by the minimal thymidine kinase promoter (pTK), indicating the lack of general cytotoxicity for luciferase enzyme inhibition at the 50 µM concentration in both of these cell lines. The significance of the inhibition of these signaling pathways via machaeridiol 5-7 and their cross-talk potential has been discussed.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: