Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Removal of single and dual ring thiophene's from dodecane using cavitation based processes.

  • Peter Delaney‎ et al.
  • Ultrasonics sonochemistry‎
  • 2022‎

Utilising cavitation for enhancing oxidative desulphurization has been investigated for nearly-two decades with recent investigations shifting focus from low-capacity acoustic cavitation (AC) to scalable hydrodynamic cavitation (HC). This work focuses on developing a viable means for removing thiophene's from fuels. In the first phase of this work, use of vortex based HC devices for removal of single and dual ring thiophenes from dodecane was investigated. HC was shown to be able to remove single ring thiophene from dodecane without using any external catalyst or additives. However, in absence of catalyst or additives, it was not possible to remove dual ring thiophenes such as dibenzothiophene using HC. Therefore, in the second phase of this work, various strategies based on use of catalyst or additives to augment cavitation based process were investigated. AC based experiments were opted for shortlisting suitable catalysts and additives for intensifying cavitation based processes. The influence of using oxidant (H2O2) and carboxylic acid catalysts on efficacy of removal of dual ring thiophenes is presented. Several conditions were tested, and the optimal volumetric ratios of 0.95 v/v % H2O2 and 6.25 v/v % HCOOH was identified and utilised throughout the remainder of the study. Regeneration of extractant which accumulates oxidised sulphur species from dodecane was also investigated using AC. The additives and process conditions reported in this work are useful for enhancing desulphurization performance.


Oxidation of Sulphur pollutants in model and real fuels using hydrodynamic cavitation.

  • Peter Delaney‎ et al.
  • Ultrasonics sonochemistry‎
  • 2023‎

Hydrodynamic Cavitation (HC) offers an attractive platform for intensifying oxidative desulphurization of fuels. In the first part of this work, we present new results on oxidising single ring thiophene in a model fuel over the extended range of volume fraction of organic phase from 2.5 to 80 v/v %. We also present influence of type and scale of HC device on performance of oxidative desulphurization. Further experiments revealed that oxidising radicals generated in-situ by HC alone were not able to oxidise dual ring thiophenes. External catalyst (formic acid) and oxidising agents (hydrogen peroxide, H2O2) were therefore used with HC. Based on our prior work with acoustic cavitation (AC), the volumetric ratios for H2O2 and formic acid were identified as 0.95 v/v % and 6.25 v/v % respectively. The data of oxidation of dual ring thiophenes with n-dodecane and n-hexane as model fuels and typical transport fuels (diesel, kerosene, and petrol) using these oxidant and catalyst is presented. The observed performance with HC was compared with results obtained from a stirred tank and AC set-up. The presented data indicates that HC is able to intensify oxidation of sulphur species. The presented results provide a sound basis for further developments on HC based oxidative desulphurization processes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: