Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Chronic Nicotine Exposure In Vivo and In Vitro Inhibits Vitamin B1 (Thiamin) Uptake by Pancreatic Acinar Cells.

  • Padmanabhan Srinivasan‎ et al.
  • PloS one‎
  • 2015‎

Thiamin (vitamin B1), a member of the water-soluble family of vitamins, is essential for normal cellular functions; its deficiency results in oxidative stress and mitochondrial dysfunction. Pancreatic acinar cells (PAC) obtain thiamin from the circulation using a specific carrier-mediated process mediated by both thiamin transporters -1 and -2 (THTR-1 and THTR-2; encoded by the SLC19A2 and SLC19A3 genes, respectively). The aim of the current study was to examine the effect of chronic exposure of mouse PAC in vivo and human PAC in vitro to nicotine (a major component of cigarette smoke that has been implicated in pancreatic diseases) on thiamin uptake and to delineate the mechanism involved. The results showed that chronic exposure of mice to nicotine significantly inhibits thiamin uptake in murine PAC, and that this inhibition is associated with a marked decrease in expression of THTR-1 and THTR-2 at the protein, mRNA and hnRNAs level. Furthermore, expression of the important thiamin-metabolizing enzyme, thiamin pyrophosphokinase (TPKase), was significantly reduced in PAC of mice exposed to nicotine. Similarly, chronic exposure of cultured human PAC to nicotine (0.5 μM, 48 h) significantly inhibited thiamin uptake, which was also associated with a decrease in expression of THTR-1 and THTR-2 proteins and mRNAs. This study demonstrates that chronic exposure of PAC to nicotine impairs the physiology and the molecular biology of the thiamin uptake process. Furthermore, the study suggests that the effect is, in part, mediated through transcriptional mechanism(s) affecting the SLC19A2 and SLC19A3 genes.


Analysis of multidrug resistant group B streptococci with reduced penicillin susceptibility forming small, less hemolytic colonies.

  • Hirotsugu Banno‎ et al.
  • PloS one‎
  • 2017‎

Group B streptococci (GBS; Streptococcus agalactiae) are the leading cause of neonatal invasive diseases and are also important pathogens for elderly adults. Until now, nearly all GBS with reduced penicillin susceptibility (PRGBS) have shown β-hemolytic activity and grow on sheep blood agar. However, we have previously reported three PRGBS clinical isolates harboring a CylK deletion that form small less hemolytic colonies. In this study, we examined the causes of small, less hemolytic colony formation in these clinical isolates. Isogenic strains were sequenced to identify the mutation related to a small colony size. We identified a 276_277insG nucleic acid insertion in the thiamin pyrophosphokinase (tpk) gene, resulting in premature termination at amino acid 103 in TPK, as a candidate mutation responsible for small colony formation. The recombinant strain Δtpk, which harbored the 276_277insG insertion in the tpk gene, showed small colony formation. The recombinant strain ΔcylK, which harbored the G379T substitution in cylK, showed a reduction in hemolytic activity. The phenotypes of both recombinant strains were complemented by the expression of intact TPK or CylK, respectively. Moreover, the use of Rapid ID 32 API and VITEK MS to identify strains as GBS was evaluated clinical isolates and recombinant strains. VITEK MS, but not Rapid ID 32 API, was able to accurately identify the strains as GBS. In conclusion, we determined that mutations in tpk and cylK caused small colonies and reduced hemolytic activity, respectively, and characterized the clinical isolates in detail.


Genome-wide screening reveals an EMT molecular network mediated by Sonic hedgehog-Gli1 signaling in pancreatic cancer cells.

  • Xuanfu Xu‎ et al.
  • PloS one‎
  • 2012‎

The role of sonic hedgehog (SHH) in epithelial mesenchymal transition (EMT) of pancreatic cancer (PC) is known, however, its mechanism is unclear. Because SHH promotes tumor development predominantly through Gli1, we sought to understand its mechanism by identifying Gli1 targets in pancreatic cancer cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: