Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Sexual difference of small RNA expression in Tetralogy of Fallot.

  • Bo Wang‎ et al.
  • Scientific reports‎
  • 2018‎

Small RNAs, especially the microRNAs, have been revealed to play great roles in heart development and congenital heart defects. Several studies have shown dysregulated miRNAs in ventricular tissues of Tetralogy of Fallot (TOF) patients. In the present study, we conducted high throughput sequencing to obtain the global profiling of small RNA transcriptome in heart right ventricular samples from 10 age -matched TOF patients. These samples showed dominant composition of miRNA and mitochondrial associated RNAs. By sRNA cluster identification and differential gene expression analysis, significant sexual difference was discovered for sRNA expression in TOF patients. miR-1/miR-133, which have been identified as essential for cardiac development, account for the most variance of sRNA expression between sexes in TOF hearts.


Altered microRNA and target gene expression related to Tetralogy of Fallot.

  • Marcel Grunert‎ et al.
  • Scientific reports‎
  • 2019‎

MicroRNAs (miRNAs) play an important role in guiding development and maintaining function of the human heart. Dysregulation of miRNAs has been linked to various congenital heart diseases including Tetralogy of Fallot (TOF), which represents the most common cyanotic heart malformation in humans. Several studies have identified dysregulated miRNAs in right ventricular (RV) tissues of TOF patients. In this study, we profiled genome-wide the whole transcriptome and analyzed the relationship of miRNAs and mRNAs of RV tissues of a homogeneous group of 22 non-syndromic TOF patients. Observed profiles were compared to profiles obtained from right and left ventricular tissue of normal hearts. To reduce the commonly observed large list of predicted target genes of dysregulated miRNAs, we applied a stringent target prediction pipeline integrating probabilities for miRNA-mRNA interaction. The final list of disease-related miRNA-mRNA pairs comprises novel as well as known miRNAs including miR-1 and miR-133, which are essential to cardiac development and function by regulating KCNJ2, FBN2, SLC38A3 and TNNI1. Overall, our study provides additional insights into post-transcriptional gene regulation of malformed hearts of TOF patients.


Left Ventricular Stiffness in Adolescents and Young Adults with Repaired Tetralogy of Fallot.

  • Clement Kwong-Man Yu‎ et al.
  • Scientific reports‎
  • 2017‎

Left ventricular (LV) remodeling after tetralogy of Fallot (TOF) repair may influence LV stiffness. We hypothesized that LV stiffness is altered after TOF repair and related to myocardial calibrated integrated backscatter (cIB) and LV diastolic myocardial deformation. Seventy-seven TOF patients and 80 controls were studied. LV stiffness was assessed by diastolic wall strain (DWS) as defined by (LVPWsystole-LVPWdiastole)/LVPWsystole, where LVPW is LV posterior wall thickness, and stiffness index as defined by (E/e/LV end-diastolic dimension), where E and e are respectively early diastolic transmitral inflow and mitral annular velocities. Septal and LVPW cIB and LV diastolic strain rates were determined. Patients had significantly lower DWS (p < 0.001), higher stiffness index (p < 0.001), and greater cIB (p < 0.001). LV DWS correlated negatively with LV stiffness index (r = -0.31, p < 0.001), septal cIB (r = -0.21, p = 0.01), E/e ratio (r = -0.30, p < 0.001) and RV end-diastolic area (r = -0.31, p < 0.001), and positively with LV early (r = 0.33, p < 0.001) and late (r = 0.20, p = 0.01) diastolic strain rates and RV fractional area change (FAC) (r = 0.24, p = 0.003). Multivariate analysis revealed E/e (β = -0.26, p = 0.008), RV end-diastolic area (β = -0.20, p = 0.02), and RV FAC (β = 0.18, p = 0.01) as significant correlates of DWS. Left ventricular stiffening occurs after TOF repair and is related to impaired LV diastolic myocardial deformation, myocardial cIB, and RV volume overload.


BVES downregulation in non-syndromic tetralogy of fallot is associated with ventricular outflow tract stenosis.

  • Yan Shi‎ et al.
  • Scientific reports‎
  • 2020‎

BVES is a transmembrane protein, our previous work demonstrated that single nucleotide mutations of BVES in tetralogy of fallot (TOF) patients cause a downregulation of BVES transcription. However, the relationship between BVES and the pathogenesis of TOF has not been determined. Here we reported our research results about the relationship between BVES and the right ventricular outflow tract (RVOT) stenosis. BVES expression was significantly downregulated in most TOF samples compared with controls. The expression of the second heart field (SHF) regulatory network genes, including NKX2.5, GATA4 and HAND2, was also decreased in the TOF samples. In zebrafish, bves knockdown resulted in looping defects and ventricular outflow tract (VOT) stenosis, which was mostly rescued by injecting bves mRNA. bves knockdown in zebrafish also decreased the expression of SHF genes, such as nkx2.5, gata4 and hand2, consistent with the TOF samples` results. The dual-fluorescence reporter system analysis showed that BVES positively regulated the transcriptional activity of GATA4, NKX2.5 and HAND2 promoters. In zebrafish, nkx2.5 mRNA partially rescued VOT stenosis caused by bves knockdown. These results indicate that BVES downregulation may be associated with RVOT stenosis of non-syndromic TOF, and bves is probably involved in the development of VOT in zebrafish.


Induced pluripotent stem cells of patients with Tetralogy of Fallot reveal transcriptional alterations in cardiomyocyte differentiation.

  • Marcel Grunert‎ et al.
  • Scientific reports‎
  • 2020‎

Patient-specific induced pluripotent stem cells (ps-iPSCs) and their differentiated cell types are a powerful model system to gain insight into mechanisms driving early developmental and disease-associated regulatory networks. In this study, we use ps-iPSCs to gain insights into Tetralogy of Fallot (TOF), which represents the most common cyanotic heart defect in humans. iPSCs were generated and further differentiated to cardiomyocytes (CMs) using standard methods from two well-characterized TOF patients and their healthy relatives serving as controls. Patient-specific expression patterns and genetic variability were investigated using whole genome and transcriptome sequencing data. We first studied the clonal mutational burden of the derived iPSCs. In two out of three iPSC lines of patient TOF-01, we found a somatic mutation in the DNA-binding domain of tumor suppressor P53, which was not observed in the genomic DNA from blood. Further characterization of this mutation showed its functional impact. For patient TOF-02, potential disease-relevant differential gene expression between and across cardiac differentiation was shown. Here, clear differences at the later stages of differentiation could be observed between CMs of the patient and its controls. Overall, this study provides first insights into the complex molecular mechanisms underlying iPSC-derived cardiomyocyte differentiation and its transcriptional alterations in TOF.


Biventricular shape modes discriminate pulmonary valve replacement in tetralogy of Fallot better than imaging indices.

  • Sachin Govil‎ et al.
  • Scientific reports‎
  • 2023‎

Current indications for pulmonary valve replacement (PVR) in repaired tetralogy of Fallot (rTOF) rely on cardiovascular magnetic resonance (CMR) image-based indices but are inconsistently applied, lead to mixed outcomes, and remain debated. This study aimed to test the hypothesis that specific markers of biventricular shape may discriminate differences between rTOF patients who did and did not require subsequent PVR better than standard imaging indices. In this cross-sectional retrospective study, biventricular shape models were customized to CMR images from 84 rTOF patients. A statistical atlas of end-diastolic shape was constructed using principal component analysis. Multivariate regression was used to quantify shape mode and imaging index associations with subsequent intervention status (PVR, n = 48 vs. No-PVR, n = 36), while accounting for confounders. Clustering analysis was used to test the ability of the most significant shape modes and imaging indices to discriminate PVR status as evaluated by a Matthews correlation coefficient (MCC). Geometric strain analysis was also conducted to assess shape mode associations with systolic function. PVR status correlated significantly with shape modes associated with right ventricular (RV) apical dilation and left ventricular (LV) dilation (p < 0.01), RV basal bulging and LV conicity (p < 0.05), and pulmonary valve dilation (p < 0.01). PVR status also correlated significantly with RV ejection fraction (p < 0.05) and correlated marginally with LV end-systolic volume index (p < 0.07). Shape modes discriminated subsequent PVR better than standard imaging indices (MCC = 0.49 and MCC = 0.28, respectively) and were significantly associated with RV and LV radial systolic strain. Biventricular shape modes discriminated differences between patients who did and did not require subsequent PVR better than standard imaging indices in current use. These regional features of cardiac morphology may provide insight into adaptive vs. maladaptive types of structural remodeling and point toward an improved quantitative, patient-specific assessment tool for clinical use.


Computed tomography for evaluating right ventricle and pulmonary artery in pediatric tetralogy of Fallot: correlation with post-operative pulmonary regurgitation.

  • Yue Gao‎ et al.
  • Scientific reports‎
  • 2018‎

Pulmonary regurgitation (PR) is the most common complication after tetralogy of Fallot (TOF) surgical repair, and long-term PR might result in cardiovascular events. The aim of this study was to assess the influence of pre-operative right ventricle (RV) and pulmonary artery (PA) parameters assessed by dual-source computed tomography on post-operative PR. A total of 41 TOF patients who underwent trans-valve surgical repair were retrospectively recruited. The RV and PA parameters evaluated by pre-operative DSCT were compared between the PR and non-PR groups. Our result revealed that the PA parameters (McGoon ratio, Nakata index, and LPA diameter) and RV parameters (RV length diameter and RV short diameter) all showed significant differences between the two groups (all p < 0.05). There was a significant correlation between PR and LPA diameter (r = 0.361), McGoon ratio (r = 0.413), and Nakata index (r = 0.482). Receiver operating characteristic analysis also revealed a moderate sensitivity and specificity of LPA (66.33%; 82.60%), McGoon ratio (83.33%, 56.52%), and Nakata index (83.33%; 60.87%) for predicting the occurrence of PR. This study indicated that these pre-operative indices calculated by DSCT are associated with post-operative PR and that these pre-operative PA and RV parameters may serve as novel predictors of the risk of PR.


Unchanged right ventricular strain in repaired tetralogy of Fallot after pulmonary valve replacement with radial long-axis cine magnetic resonance images.

  • Masateru Kawakubo‎ et al.
  • Scientific reports‎
  • 2021‎

We measured right ventricular (RV) strain by applying a novel postprocessing technique to conventional short-axis cine magnetic resonance imaging in the repaired tetralogy of Fallot (TOF) and investigated whether pulmonary valve replacement (PVR) changes the RV strain. Twenty-four patients with repaired TOF who underwent PVR and 16 healthy controls were enrolled. Global maximum and minimum principal strains (GPSmax, GPSmin) and global circumferential and longitudinal strains (GCS, GLS) were measured from short-axis cine images reconstructed radially along the long axis. Strain parameters before and after PVR were compared using paired t-tests. One-way ANOVA with Tukey post-hoc analysis was used for comparisons between the before and after PVR groups and the control group. There were no differences in strain parameters before and after PVR. The GPSmax before PVR was lower than that in the control group (P = 0.002). Before and after PVR, GCSs were higher and GLSs were lower than those in the control group (before and after GCSs: P = 0.002 for both, before and after GLSs: P < 0.0001 and P = 0.0003). RV strains from radially reconstructed short-axis cine images revealed unchanged myocardial motion after PVR. When compared to the control group, changes in GCS and GLS in TOF patients before and after PVR might be due to RV remodeling.


Whole-exome sequencing identifies Y1495X of SCN5A to be associated with familial conduction disease and sudden death.

  • Zhi-Ping Tan‎ et al.
  • Scientific reports‎
  • 2014‎

SCN5A mutations have been reported to underlie a variety of inherited arrhythmias, while the complex overlapping phenotype, especially with congenital heart disease (CHD), is rarely reported. The 48-year-old proband underwent a recent syncope during rest. A CHD (tetralogy of Fallot) and conduction disease was revealed by echocardiogram and ultrasonic cardiogram examination. We combined whole-exome sequencing (WES) and bioinformatics strategies to identify the pathogenic gene for this autosomal-dominant cardiac conduction disease (CCD) in a multi-generation pedigree. We examined four members of this family, including three affected and one unaffected. A novel nonsense mutation (Y1495X) in SCN5A was identified in the affected family members. This mutation is predicted to generate a truncated SCN5A protein, which could result in the loss of sodium current, a defined mechanism of SCN5A related arrhythmias. Our study provides evidence that WES is a highly effective approach for genetic analyses of rare clinical phenotypes. Our study also offers accurate genetic testing information for those yet clinically negative relatives.


Ozone and Other Air Pollutants and the Risk of Congenital Heart Defects.

  • Bin Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

The objective of this study was to evaluate whether high levels of maternal exposure to O3, SO2, NO2, CO are related to increased risk of congenital heart defects (CHDs) in Wuhan, China. The study included mothers living in the central districts of Wuhan during pregnancy over the two-year period from June 10, 2011 to June 9, 2013. For each study participant, we assigned 1-month averages of O3, SO2, NO2 and CO exposure based on measurements obtained from the nearest exposure monitor to the living residence of mothers during their early pregnancy period. In one-pollutant model, we observed an increased risk of CHDs, ventricular septal defect (VSD), and tetralogy of fallot (TF) with increasing O3 exposure. In two-pollutant model, associations with all CHDs, VSD, and TF for O3 were generally consistent compared to the models that included only O3, with the strongest aORs observed for exposures during the third month of pregnancy. We also observed a positive association between CO exposures during the third month of pregnancy and VSD in two pollution model.Our results contribute to the small body of evidence regarding air pollution exposure and CHDs, but confirmation of these associations will be needed in future studies.


Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases.

  • Robert Hoehndorf‎ et al.
  • Scientific reports‎
  • 2015‎

Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.


A HAND to TBX5 Explains the Link Between Thalidomide and Cardiac Diseases.

  • Athar Khalil‎ et al.
  • Scientific reports‎
  • 2017‎

Congenital heart disease is the leading cause of death in the first year of life. Mutations only in few genes have been linked to some cases of CHD. Thalidomide was used by pregnant women for morning sickness but was removed from the market because it caused severe malformations including CHDs. We used both in silico docking software, and in vitro molecular and biochemical methods to document a novel interaction involving Thalidomide, TBX5, and HAND2. Thalidomide binds readily to TBX5 through amino acids R81, R82, and K226 all implicated in DNA binding. It reduces TBX5 binding to DNA by 40%, and suppresses TBX5 mediated activation of the NPPA and VEGF promoters by 70%. We documented a novel interaction between TBX5 and HAND2, and showed that a p.G202V HAND2 variant associated with CHD and coronary artery diseases found in a large Lebanese family with high consanguinity, drastically inhibited this interaction by 90%. Similarly, thalidomide inhibited the TBX5/HAND2 physical interaction, and the in silico docking revealed that the same amino acids involved in the interaction of TBX5 with DNA are also involved in its binding to HAND2. Our results establish a HAND2/TBX5 pathway implicated in heart development and diseases.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: