Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 27 papers

Xenografting of human fetal testis tissue: a new approach to study fetal testis development and germ cell differentiation.

  • Rod T Mitchell‎ et al.
  • Human reproduction (Oxford, England)‎
  • 2010‎

Abnormal fetal testis development can result in disorders of sex development (DSDs) and predispose to later testicular dysgenesis syndrome (TDS) disorders such as testicular germ cell tumours. Studies of human fetal testis development are hampered by the lack of appropriate model, and intervention systems. We hypothesized that human fetal testis xenografts can recapitulate normal development.


How does chemotherapy treatment damage the prepubertal testis?

  • Caroline M Allen‎ et al.
  • Reproduction (Cambridge, England)‎
  • 2018‎

Chemotherapy treatment is a mainstay of anticancer regimens, significantly contributing to the recent increase in childhood cancer survival rates. Conventional cancer therapy targets not only malignant but also healthy cells resulting in side effects including infertility. For prepubertal boys, there are currently no fertility preservation strategies in use, although several potential methods are under investigation. Most of the current knowledge in relation to prepubertal gonadotoxicity has been deduced from adult studies; however, the prepubertal testis is relatively quiescent in comparison to the adult. This review provides an overview of research to date in humans and animals describing chemotherapy-induced prepubertal gonadotoxicity, focusing on direct gonadal damage. Testicular damage is dependent upon the agent, dosage, administration schedule and age/pubertal status at time of treatment. The chemotherapy agents investigated so far target the germ cell population activating apoptotic pathways and may also impair Sertoli cell function. Due to use of combined chemotherapy agents for patients, the impact of individual drugs is hard to define, however, use of in vivo and in vitro animal models can overcome this problem. Furthering our understanding of how chemotherapy agents target the prepubertal testis will provide clarity to patients on the gonadotoxicity of different drugs and aid in the development of cytoprotective agents.


Ibuprofen results in alterations of human fetal testis development.

  • Millissia Ben Maamar‎ et al.
  • Scientific reports‎
  • 2017‎

Among pregnant women ibuprofen is one of the most frequently used pharmaceutical compounds with up to 28% reporting use. Regardless of this, it remains unknown whether ibuprofen could act as an endocrine disruptor as reported for fellow analgesics paracetamol and aspirin. To investigate this, we exposed human fetal testes (7-17 gestational weeks (GW)) to ibuprofen using ex vivo culture and xenograft systems. Ibuprofen suppressed testosterone and Leydig cell hormone INSL3 during culture of 8-9 GW fetal testes with concomitant reduction in expression of the steroidogenic enzymes CYP11A1, CYP17A1 and HSD17B3, and of INSL3. Testosterone was not suppressed in testes from fetuses younger than 8 GW, older than 10-12 GW, or in second trimester xenografted testes (14-17 GW). Ex vivo, ibuprofen also affected Sertoli cell by suppressing AMH production and mRNA expression of AMH, SOX9, DHH, and COL2A1. While PGE2 production was suppressed by ibuprofen, PGD2 production was not. Germ cell transcripts POU5F1, TFAP2C, LIN28A, ALPP and KIT were also reduced by ibuprofen. We conclude that, at concentrations relevant to human exposure and within a particular narrow 'early window' of sensitivity within first trimester, ibuprofen causes direct endocrine disturbances in the human fetal testis and alteration of the germ cell biology.


The Dynamic Transcriptional Cell Atlas of Testis Development during Human Puberty.

  • Jingtao Guo‎ et al.
  • Cell stem cell‎
  • 2020‎

The human testis undergoes dramatic developmental and structural changes during puberty, including proliferation and maturation of somatic niche cells, and the onset of spermatogenesis. To characterize this understudied process, we profiled and analyzed single-cell transcriptomes of ∼10,000 testicular cells from four boys spanning puberty and compared them to those of infants and adults. During puberty, undifferentiated spermatogonia sequentially expand and differentiate prior to the initiation of gametogenesis. Notably, we identify a common pre-pubertal progenitor for Leydig and myoid cells and delineate candidate factors controlling pubertal differentiation. Furthermore, pre-pubertal Sertoli cells exhibit two distinct transcriptional states differing in metabolic profiles before converging to an alternative single mature population during puberty. Roles for testosterone in Sertoli cell maturation, antimicrobial peptide secretion, and spermatogonial differentiation are further highlighted through single-cell analysis of testosterone-suppressed transfemale testes. Taken together, our transcriptional atlas of the developing human testis provides multiple insights into developmental changes and key factors accompanying male puberty.


Evaluation of Ex Vivo Adrenocorticotropic Hormone Responsiveness of Human Fetal Testis.

  • Mariska A M Schröder‎ et al.
  • Endocrinology‎
  • 2023‎

Testicular adrenal rest tumors (TARTs), commonly occurring in males with congenital adrenal hyperplasia, may arise from chronic stimulation of adrenocorticotropic hormone (ACTH)-sensitive cells in the testes. It is not yet established whether the human fetal testis (HFT) is responsive to ACTH. To investigate this, we cultured HFT tissue with and without ACTH for up to 5 days, and quantified adrenal steroid hormones and expression of adrenal steroidogenic enzymes. Fetal testis and adrenal tissue produced high levels of testosterone and cortisol, respectively, indicating viability. In contrast to fetal adrenal tissues, the expression of ACTH receptor MC2R was either absent or expressed at extremely low levels in ex vivo HFT tissue and no clear response to ACTH in gene expression or steroid hormone production was observed. Altogether, this study suggests that the HFT is unresponsive to ACTH, which would indicate that a TART does not arise from fetal testicular cells chronically exposed to ACTH in utero.


Diethylstilboestrol exposure does not reduce testosterone production in human fetal testis xenografts.

  • Rod T Mitchell‎ et al.
  • PloS one‎
  • 2013‎

In rodents, in utero exposure to exogenous estrogens including diethylstilboestrol (DES) results in major suppression of steroidogenesis in fetal testes. Whether similar effects occur in the human fetal testis is equivocal. Based on the results of the rodent studies, we hypothesised that exposure of human fetal testes to DES would result in a reduction in testosterone production. We show, using a xenograft approach, that testosterone production is not reduced in human fetal testis following DES exposure. Human fetal testes (15-19 weeks' gestation, n = 6) were xenografted into castrate male nude mice which were then treated for 35 days with vehicle or 100 µg/kg DES three times a week. For comparison, similar treatment was applied to pregnant rats from e13.5-e20.5 and effects on fetal testes evaluated at e21.5. Xenograft testosterone production was assessed by measuring host seminal vesicle (SV) weights as an indirect measure over the entire grafting period, and single measurement of serum testosterone at termination. Human fetal testis xenografts showed similar survival in DES and vehicle-exposed hosts. SV weight (44.3 v 26.6 mg, p = 0.01) was significantly increased in DES compared to vehicle-exposed hosts, respectively, indicating an overall increase in xenograft testosterone production over the grafting period, whilst serum testosterone at termination was unchanged. In contrast intra-testicular testosterone levels were reduced by 89%, in fetal rats exposed to DES. In rats, DES effects are mediated via Estrogen Receptor α (ESR1). We determined ESR1 protein and mRNA expression in human and rat fetal testis. ESR1 was expressed in rat, but not in human, fetal Leydig cells. We conclude that human fetal testis exposure to DES does not impair testosterone production as it does in rats, probably because ESR1 is not expressed in human fetal Leydig cells. This indicates that DES exposure is likely to pose minimal risk to masculinization of the human fetus.


Nodal Signaling Regulates Germ Cell Development and Establishment of Seminiferous Cords in the Human Fetal Testis.

  • Anne Jørgensen‎ et al.
  • Cell reports‎
  • 2018‎

Disruption of human fetal testis development is widely accepted to underlie testicular germ cell cancer (TGCC) origin and additional disorders within testicular dysgenesis syndrome (TDS). However, the mechanisms for the development of testicular dysgenesis in humans are unclear. We used ex vivo culture and xenograft approaches to investigate the importance of Nodal and Activin signaling in human fetal testis development. Inhibition of Nodal, and to some extent Activin, signaling disrupted seminiferous cord formation, abolished AMH expression, reduced androgen secretion, and decreased gonocyte numbers. Subsequent xenografting of testicular tissue rescued the disruptive effects on seminiferous cords and somatic cells but not germ cell effects. Stimulation of Nodal signaling increased the number of germ cells expressing pluripotency factors, and these persisted after xenografting. Our findings suggest a key role for Nodal signaling in the regulation of gonocyte differentiation and early human testis development with implications for the understanding of TGCC and TDS origin.


Intratubular germ cell neoplasia of the human testis: heterogeneous protein expression and relation to invasive potential.

  • Rod T Mitchell‎ et al.
  • Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc‎
  • 2014‎

Testicular germ cell cancer develops from premalignant intratubular germ cell neoplasia, unclassified cells that are believed to arise from failure of normal maturation of fetal germ cells from gonocytes (OCT4(+)/MAGEA4(-)) into pre-spermatogonia (OCT4(-)/MAGEA4(+)). Intratubular germ cell neoplasia cell subpopulations based on stage of germ cell differentiation have been described, however the importance of these subpopulations in terms of invasive potential has not been reported. We hypothesized that cells expressing an immature (OCT4(+)/MAGEA4(-)) germ cell profile would exhibit an increased proliferation rate compared with those with a mature profile (OCT4(+)/MAGEA4(+)). Therefore, we performed triple immunofluorescence and stereology to quantify the different intratubular germ cell neoplasia cell subpopulations, based on expression of germ cell (OCT4, PLAP, AP2γ, MAGEA4, VASA) and proliferation (Ki67) markers, in testis sections from patients with preinvasive disease, seminoma, and non-seminoma. We compared these subpopulations with normal human fetal testis and with seminoma cells. Heterogeneity of protein expression was demonstrated in intratubular germ cell neoplasia cells with respect to gonocyte and spermatogonial markers. It included an embryonic/fetal germ cell subpopulation lacking expression of the definitive intratubular germ cell neoplasia marker OCT4, that did not correspond to a physiological (fetal) germ cell subpopulation. OCT4(+)/MAGEA4(-) cells showed a significantly increased rate of proliferation compared with the OCT4(+)/MAGEA4(+) population (12.8 versus 3.4%, P<0.0001) irrespective of histological tumor type, reflected in the predominance of OCT4(+)/MAGEA4(-) cells in the invasive tumor component. Surprisingly, OCT4(+)/MAGEA4(-) cells in patients with preinvasive disease showed significantly higher proliferation compared to those with seminoma or non-seminoma (18.1 versus 10.2 versus 7.2%, P<0.05, respectively). In conclusion, this study has demonstrated that OCT4(+)/MAGEA4(-) cells are the most frequent and most proliferative cell population in tubules containing intratubular germ cell neoplasia, which appears to be an important factor in determining invasive potential of intratubular germ cell neoplasia to seminomas.


Reconstitution of rat fetal testis during the masculinisation programming window induces focal dysgenesis consistent with testicular dysgenesis syndrome.

  • Ellie Smart‎ et al.
  • Scientific reports‎
  • 2020‎

Focal dysgenesis is a consistent feature of testicular dysgenesis syndrome (TDS) in humans. Rodent studies show that perturbation of androgens (e.g. following phthalate exposure) during a fetal masculinisation programming window (MPW) predisposes to a TDS phenotype. This study aimed to determine whether dissociation and reconstitution of rat fetal testis tissue during the MPW can be used to model and manipulate seminiferous cord development, including induction of focal dysgenesis, as described in TDS. Dissociated fetal rat testes were xenotransplanted subcutaneously into recipient mice for 4 weeks. Transplanted mice were treated with vehicle or di-n-butyl-phthalate (DBP, a plasticising chemical known to induce testicular dysgenesis in vivo in rats). Testosterone production by the transplants was measured in recipient mice and immunofluorescence was performed on the retrieved transplants to identify features consistent with focal testicular dysgenesis. Re-aggregation of rat fetal testis tissue xenotransplants during the MPW results in reconstitution of seminiferous cords. Features of focal testicular dysgenesis were present in re-aggregated testis, including ectopic Sertoli cells and intratubular Leydig cells (ITLCs). DBP exposure of recipient mice reduced androgen-dependent seminal vesicle weight (8.3 vs 26.7 mg; p < 0.05), but did not enhance features of focal dysgenesis including number of ITLCs (0.07 vs 0.10 cells/mm2; p > 0.05). We conclude that seminiferous cord reformation during the MPW results in development of focal dysgenesis. The system may be used to separate specific effects (e.g. androgen suppression) of individual chemical exposures from other mechanisms that may be conserved in TDS.


Chemotherapy drugs cyclophosphamide, cisplatin and doxorubicin induce germ cell loss in an in vitro model of the prepubertal testis.

  • Ellie Smart‎ et al.
  • Scientific reports‎
  • 2018‎

Long term survival rates for childhood cancers is steadily increasing, however cancer survivors can experience fertility problems as a consequence of chemotherapy treatment. This is particularly problematic for young boys, for whom no fertility preservation treatment is yet established. Here, we have determined the effects on prepubertal mouse testis of three commonly used chemotherapy drugs; cyclophosphamide (using its active metabolite phosphoramide mustard), cisplatin and doxorubicin, exposing testicular fragments to a clinically relevant range of concentrations in vitro. All three drugs induced a specific and highly significant loss of germ cells, including spermatogonial stem cells. In contrast, there was no significant effect on somatic cells, for either Sertoli or interstitial cells. Time course analysis of cleaved Caspase-3 expression showed a significant increase in apoptosis eight hours prior to a detectable decrease in germ cell numbers following exposure to phosphoramide mustard or cisplatin, although this pattern was not seen following doxorubicin-exposure. Moreover, analysis of DNA damage at 16 h showed increased γH2AX expression in response to all three drugs. Overall, results show that cisplatin, doxorubicin and cyclophosphamide all specifically induce loss of germ cells, including of spermatogonial stem cells, in the prepubertal mouse testis at concentrations relevant to human therapeutic exposures.


Effect of environmental and pharmaceutical exposures on fetal testis development and function: a systematic review of human experimental data.

  • Karen R Kilcoyne‎ et al.
  • Human reproduction update‎
  • 2019‎

Overall, the incidence of male reproductive disorders has increased in recent decades. Testicular development during fetal life is crucial for subsequent male reproductive function. Non-genomic factors such as environmental chemicals, pharmaceuticals and lifestyle have been proposed to impact on human fetal testicular development resulting in subsequent effects on male reproductive health. Whilst experimental studies using animal models have provided support for this hypothesis, more recently a number of experimental studies using human tissues and cells have begun to translate these findings to determine direct human relevance.


Irinotecan metabolite SN38 results in germ cell loss in the testis but not in the ovary of prepubertal mice.

  • Federica Lopes‎ et al.
  • Molecular human reproduction‎
  • 2016‎

Does the Irinotecan metabolite 7-ethyl-10-hydroxycamptothecan (SN38) damage the gonads of male and female prepubertal mice?


Granulocyte-colony stimulating factor does not prevent in vitro cisplatin-induced germ cell reduction in immature human and mouse testis.

  • Gabriele Matilionyte‎ et al.
  • BMC cancer‎
  • 2023‎

Currently there are no established fertility preservation options for pre-pubertal boys facing cancer treatment. Granulocyte-colony stimulating factor (G-CSF) treatment has been proposed to be chemoprotective against spermatogonial cell loss in an alkylating chemotherapy model of busulfan treated adult mice. Having previously shown that exposure to the alkylating-like chemotherapy cisplatin resulted in a reduction in germ cell numbers in immature human testicular tissues, we here investigate whether G-CSF would prevent cisplatin-induced germ cell loss in immature human and mouse (fetal and pre-pubertal) testicular tissues.


Comparative effects of di(n-butyl) phthalate exposure on fetal germ cell development in the rat and in human fetal testis xenografts.

  • Sander van den Driesche‎ et al.
  • Environmental health perspectives‎
  • 2015‎

Phthalate exposure induces germ cell effects in the fetal rat testis. Although experimental models have shown that the human fetal testis is insensitive to the steroidogenic effects of phthalates, the effects on germ cells have been less explored.


Androgen receptor expression is required to ensure development of adult Leydig cells and to prevent development of steroidogenic cells with adrenal characteristics in the mouse testis.

  • Peter J O'Shaughnessy‎ et al.
  • BMC developmental biology‎
  • 2019‎

The interstitium of the mouse testis contains Leydig cells and a small number of steroidogenic cells with adrenal characteristics which may be derived from the fetal adrenal during development or may be a normal subset of the developing fetal Leydig cells. Currently it is not known what regulates development and/or proliferation of this sub-population of steroidogenic cells in the mouse testis. Androgen receptors (AR) are essential for normal testicular function and in this study we have examined the role of the AR in regulating interstitial cell development.


Exogenous Gonadotrophin Stimulation Induces Partial Maturation of Human Sertoli Cells in a Testicular Xenotransplantation Model for Fertility Preservation.

  • Marsida Hutka‎ et al.
  • Journal of clinical medicine‎
  • 2020‎

The future fertility of prepubertal boys with cancer may be irreversibly compromised by chemotherapy and/or radiotherapy. Successful spermatogenesis has not been achieved following the xenotransplantation of prepubertal human testis tissue, which is likely due to the failure of somatic cell maturation and function. We used a validated xenograft model to identify the factors required for Leydig and Sertoli cell development and function in immature human testis. Importantly, we compared the maturation status of Sertoli cells in xenografts with that of human testis tissues (n = 9, 1 year-adult). Human fetal testis (n = 6; 14-21 gestational weeks) tissue, which models many aspects of prepubertal testicular development, was transplanted subcutaneously into castrated immunocompromised mice for ~12 months. The mice received exogenous human chorionic gonadotropin (hCG; 20IU, 3×/week). In xenografts exposed continuously to hCG, we demonstrate the maintenance of Leydig cell steroidogenesis, the acquisition of features of Sertoli cell maturation (androgen receptor, lumen development), and the formation of the blood-testis barrier (connexin 43), none of which were present prior to the transplantation or in xenografts in which hCG was withdrawn after 7 months. These studies provide evidence that hCG plays a role in Sertoli cell maturation, which is relevant for future investigations, helping them generate functional gametes from immature testis tissue for clinical application.


Impacts of platinum-based chemotherapy on subsequent testicular function and fertility in boys with cancer.

  • Lim Tian En‎ et al.
  • Human reproduction update‎
  • 2020‎

Children with cancer often face infertility as a long-term complication of their treatment. For boys, compromised testicular function is common after chemotherapy and currently there are no well-established options to prevent this damage. Platinum-based agents are used to treat a wide variety of childhood cancers. However, platinum agents are not currently included in the cyclophosphamide equivalent dose (CED), which is used clinically to assess the risks to fertility posed by combination chemotherapy in children with cancer.


Sertoli Cells Modulate Testicular Vascular Network Development, Structure, and Function to Influence Circulating Testosterone Concentrations in Adult Male Mice.

  • Diane Rebourcet‎ et al.
  • Endocrinology‎
  • 2016‎

The testicular vasculature forms a complex network, providing oxygenation, micronutrients, and waste clearance from the testis. The vasculature is also instrumental to testis function because it is both the route by which gonadotropins are delivered to the testis and by which T is transported away to target organs. Whether Sertoli cells play a role in regulating the testicular vasculature in postnatal life has never been unequivocally demonstrated. In this study we used models of acute Sertoli cell ablation and acute germ cell ablation to address whether Sertoli cells actively influence vascular structure and function in the adult testis. Our findings suggest that Sertoli cells play a key role in supporting the structure of the testicular vasculature. Ablating Sertoli cells (and germ cells) or germ cells alone results in a similar reduction in testis size, yet only the specific loss of Sertoli cells leads to a reduction in total intratesticular vascular volume, the number of vascular branches, and the numbers of small microvessels; loss of germ cells alone has no effect on the testicular vasculature. These perturbations to the testicular vasculature leads to a reduction in fluid exchange between the vasculature and testicular interstitium, which reduces gonadotropin-stimulated circulating T concentrations, indicative of reduced Leydig cell stimulation and/or reduced secretion of T into the vasculature. These findings describe a new paradigm by which the transport of hormones and other factors into and out of the testis may be influenced by Sertoli cells and highlights these cells as potential targets for enhancing this endocrine relationship.


Ablation of the canonical testosterone production pathway via knockout of the steroidogenic enzyme HSD17B3, reveals a novel mechanism of testicular testosterone production.

  • Diane Rebourcet‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2020‎

Male development, fertility, and lifelong health are all androgen-dependent. Approximately 95% of circulating testosterone is synthesized by the testis and the final step in this canonical pathway is controlled by the activity of the hydroxysteroid-dehydrogenase-17-beta-3 (HSD17B3). To determine the role of HSD17B3 in testosterone production and androgenization during male development and function we have characterized a mouse model lacking HSD17B3. The data reveal that developmental masculinization and fertility are normal in mutant males. Ablation of HSD17B3 inhibits hyperstimulation of testosterone production by hCG, although basal testosterone levels are maintained despite the absence of HSD17B3. Reintroduction of HSD17B3 via gene-delivery to Sertoli cells in adulthood partially rescues the adult phenotype, showing that, as in development, different cell-types in the testis are able to work together to produce testosterone. Together, these data show that HS17B3 acts as a rate-limiting-step for the maximum level of testosterone production by the testis but does not control basal testosterone production. Measurement of other enzymes able to convert androstenedione to testosterone identifies HSD17B12 as a candidate enzyme capable of driving basal testosterone production in the testis. Together, these findings expand our understanding of testosterone production in males.


Perinatal germ cell development and differentiation in the male marmoset (Callithrix jacchus): similarities with the human and differences from the rat.

  • Chris McKinnell‎ et al.
  • Human reproduction (Oxford, England)‎
  • 2013‎

Is perinatal germ cell (GC) differentiation in the marmoset similar to that in the human?


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: