Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Genetic Diversity and Demographic History of Ganoderma boninense in Oil Palm Plantations of Sarawak, Malaysia Inferred from ITS Regions.

  • Frazer Midot‎ et al.
  • Microorganisms‎
  • 2019‎

Ganoderma boninense causes basal stem rot (BSR) and is responsible for substantial economic losses to Southeast Asia's palm oil industry. Sarawak, a major producer in Malaysia, is also affected by this disease. Emergence of BSR in oil palm planted on peat throughout Sarawak is alarming as the soil type was previously regarded as non-conducive. Phylogenetic analysis indicated a single species, G. boninense as the cause of BSR in Sarawak. Information on evolutionary and demographic history for G. boninense in Sarawak inferred through informative genes is lacking. Hence, a haplotype study on single nucleotide polymorphisms in internal transcribed spacers (SNPs-ITS) of G. boninense was carried out. Sequence variations were analysed for population structure, phylogenetic and phylogeographic relationships. The internal transcribed spacers (ITS) region of 117 isolates from four populations in eight locations across Sarawak coastal areas revealed seven haplotypes. A major haplotype, designated GbHap1 (81.2%), was found throughout all sampling locations. Single nucleotide polymorphisms were observed mainly in the ITS1 region. The genetic structure was not detected, and genetic distance did not correlate with geographical distance. Haplotype network analysis suggested evidence of recent demographic expansion. Low genetic differences among populations also suggested that these isolates belong to a single G. boninense founder population adapting to oil palm as the host.


Genetic Diversity of Hepatitis B and C Viruses Revealed by Continuous Surveillance from 2015 to 2021 in Gabon, Central Africa.

  • Haruka Abe‎ et al.
  • Microorganisms‎
  • 2023‎

Viral hepatitis remains one of the largest public health concerns worldwide. Especially in Central Africa, information on hepatitis virus infections has been limited, although the prevalence in this region has been reported to be higher than the global average. To reveal the current status of hepatitis B and C virus (HBV and HCV) infections and the genetic diversity of the viruses, we conducted longitudinal surveillance in Gabon. We detected 22 HBV and 9 HCV infections in 2047 patients with febrile illness. Genetic analyses of HBV identified subgenotype A1 for the first time in Gabon and an insertion generating a frameshift to create an X-preC/C fusion protein. We also revealed that most of the detected HCVs belonged to the "Gabon-specific" HCV subtype 4e (HCV-4e), and the entire nucleotide sequence of the HCV-4e polyprotein was determined to establish the first reference sequence. The HCV-4e strains possessed resistance-associated substitutions similar to those of other HCV-4 strains, indicating that the use of direct-acting antiviral therapy may be complex. These results provide a better understanding of the current situation of hepatitis B and C virus infections in Central Africa and will help public health organizations develop effective countermeasures to eliminate chronic viral hepatitis in this region.


Plasmodium matutinum Causing Avian Malaria in Lovebirds (Agapornis roseicollis) Hosted in an Italian Zoo.

  • Cristiano Cocumelli‎ et al.
  • Microorganisms‎
  • 2021‎

Avian malaria is a worldwide distributed, vector-born disease of birds caused by parasites of the order Haemosporida. There is a lack of knowledge about the presence and pathogenetic role of Haemosporida in Psittacidae. Here we report a case of avian malaria infection in lovebirds (Agapornis roseicollis), with the genetic characterization of the Plasmodium species involved. The birds were hosted in a zoo located in Italy, where avian malaria cases in African penguins (Spheniscus demersus) were already reported. Animals (n = 11) were submitted for necropsy after sudden death and were subjected to further analyses including histopathology, bacteriology, and PCR for the research of haemosporidians. Clinical history, gross lesions and histopathological observation of schizonts, together with positive PCR results for Plasmodium spp., demonstrated that avian malaria was the cause of death for one animal and the possible cause of death for the other nine. The sequences obtained were compared using BLAST and analyzed for similarity to sequences available at the MalAvi database. Genetic analyses demonstrated a 100% nucleotide identity to Plasmodium matutinum LINN1 for all the obtained sequences. To our knowledge, this is the first report describing avian malaria in lovebirds.


Endemic High-Risk Clone ST277 Is Related to the Spread of SPM-1-Producing Pseudomonas aeruginosa during the COVID-19 Pandemic Period in Northern Brazil.

  • Pabllo Antonny Silva Dos Santos‎ et al.
  • Microorganisms‎
  • 2023‎

Pseudomonas aeruginosa is a high-priority bacterial agent that causes healthcare-acquired infections (HAIs), which often leads to serious infections and poor prognosis in vulnerable patients. Its increasing resistance to antimicrobials, associated with SPM production, is a case of public health concern. Therefore, this study aims to determine the antimicrobial resistance, virulence, and genotyping features of P. aeruginosa strains producing SPM-1 in the Northern region of Brazil. To determine the presence of virulence and resistance genes, the PCR technique was used. For the susceptibility profile of antimicrobials, the Kirby-Bauer disk diffusion method was performed on Mueller-Hinton agar. The MLST technique was used to define the ST of the isolates. The exoS+/exoU- virulotype was standard for all strains, with the aprA, lasA, toxA, exoS, exoT, and exoY genes as the most prevalent. All the isolates showed an MDR or XDR profile against the six classes of antimicrobials tested. HRC ST277 played a major role in spreading the SPM-1-producing P. aeruginosa strains.


Overexpression of RAD51 Enables PCR-Based Gene Targeting in Lager Yeast.

  • Beatrice Bernardi‎ et al.
  • Microorganisms‎
  • 2019‎

Lager beer fermentations rely on specific polyploid hybrids between Saccharomyces cerevisiae and Saccharomyces eubayanus falling into the two groups of S. carlsbergensis/Saaz-type and S. pastorianus/Frohberg-type. These strains provide a terroir to lager beer as they have long traditional associations and local selection histories with specific breweries. Lager yeasts share, based on their common origin, several phenotypes. One of them is low transformability, hampering the gene function analyses required for proof-of-concept strain improvements. PCR-based gene targeting is a standard tool for manipulating S. cerevisiae and other ascomycetes. However, low transformability paired with the low efficiency of homologous recombination practically disable targeted gene function analyses in lager yeast strains. For genetic manipulations in lager yeasts, we employed a yeast transformation protocol based on lithium-acetate/PEG incubation combined with electroporation. We first introduced freely replicating CEN/ARS plasmids carrying ScRAD51 driven by a strong heterologous promoter into lager yeast. RAD51 overexpression in the Weihenstephan 34/70 lager yeast was necessary and sufficient in our hands for gene targeting using short-flanking homology regions of 50 bp added to a selection marker by PCR. We successfully targeted two independent loci, ScADE2/YOR128C and ScHSP104/YLL026W, and confirmed correct integration by diagnostic PCR. With these modifications, genetic alterations of lager yeasts can be achieved efficiently and the RAD51-containing episomal plasmid can be removed after successful strain construction.


An Alternative Platform for Protein Expression Using an Innate Whole Expression Module from Metagenomic DNA.

  • Dae-Eun Cheong‎ et al.
  • Microorganisms‎
  • 2019‎

Many integrated gene clusters beyond a single genetic element are commonly trapped as the result of promoter traps in (meta)genomic DNA libraries. Generally, a single element, which is mainly the promoter, is deduced from the resulting gene clusters and employed to construct a new expression vector. However, expression patterns of target proteins under the incorporated promoter are often inconsistent with those shown in clones harboring plasmids with gene clusters. These results suggest that the integrated set of gene clusters with diverse cis- and trans-acting elements is evolutionarily tuned as a complete set for gene expression, and is an expression module with all the components for the expression of a nested open reading frame (ORF). This possibility is further supported by truncation and/or serial deletion analysis of this module in which the expression of the nested ORF is highly fluctuated or reduced frequently, despite being supported by plentiful cis-acting elements in the spanning regions around the ORF such as the promoter, ribosome binding site (RBS), terminator, and 3'-/5'-UTRs for gene expression. Here, we examined whether an innate module with a naturally overexpressed gene could be considered as a scaffold for an expression system. For a proof-of-principle study, we mined a complete expression module with an innately overexpressed ORF in E. coli from a metagenomics DNA library, and incorporated it into a vector that had no regulatory element for expressing the insert. We obtained successful expression of several inserts such as MBP, GFPuv, β-glucosidase, and esterase using this simple construct without tuning and codon optimization of the target insert.


Spiroplasma Infection among Ixodid Ticks Exhibits Species Dependence and Suggests a Vertical Pattern of Transmission.

  • Shohei Ogata‎ et al.
  • Microorganisms‎
  • 2021‎

Members of the genus Spiroplasma are Gram-positive bacteria without cell walls. Some Spiroplasma species can cause disease in arthropods such as bees, whereas others provide their host with resistance to pathogens. Ticks also harbour Spiroplasma, but their role has not been elucidated yet. Here, the infection status and genetic diversity of Spiroplasma in ticks were investigated using samples collected from different geographic regions in Japan. A total of 712 ticks were tested for Spiroplasma infection by PCR targeting 16S rDNA, and Spiroplasma species were genetically characterized based on 16S rDNA, ITS, dnaA, and rpoB gene sequences. A total of 109 samples originating from eight tick species were positive for Spiroplasma infection, with infection rates ranging from 0% to 84% depending on the species. A linear mixed model indicated that tick species was the primary factor associated with Spiroplasma infection. Moreover, certain Spiroplasma alleles that are highly adapted to specific tick species may explain the high infection rates in Ixodes ovatus and Haemaphysalis kitaokai. A comparison of the alleles obtained suggests that horizontal transmission between tick species may not be a frequent event. These findings provide clues to understand the transmission cycle of Spiroplasma species in wild tick populations and their roles in host ticks.


Human and Animal Dirofilariasis in Southeast of France.

  • Younes Laidoudi‎ et al.
  • Microorganisms‎
  • 2021‎

Dirofilariasis is one of the oldest known zoonotic infections of humans mainly caused by the filarial parasites of the species Dirofilaria immitis and Dirofilaria repens, which primarily infect dogs. A five-year survey (2017 to 2021) was conducted among the dog population to assess the molecular prevalence of Dirofilaria spp. in southeast France. Morphological and genetic analysis were performed on filaroids from dogs and one infected woman from the studied area. A total of 12 (13%) dogs scored molecularly positive for Dirofilaria spp. of which nine carried blood microfilariae. Ocular dirofilariasis was detected in a 79-year-old woman with no travel history. Both electron microscopy and molecular sequencing identified the worm in the human case as D. repens. Molecularly, D. repens isolates were identical in the human and dog cases, representing the only genotype reported so far in France. Despite the distribution of this genotype through all Europe, it was grouped separately with the other two European genotypes and with Asian ones. As in almost all previous human cases in France, D. repens parasites were mainly recovered from the ocular region of patients and were geographically concentrated in the southeastern regions. Data demonstrate the sympatric occurrence of D. immitis and D. repens with high risk of infection to human and dog populations in these investigated geographical areas, thereby underlining the urgent need to implement preventive chemoprophylactic strategies and vector control to reduce the risk of these filaroids in dog and human populations.


Molecular Epidemiological Characterization of Staphylococcus argenteus Clinical Isolates in Japan: Identification of Three Clones (ST1223, ST2198, and ST2550) and a Novel Staphylocoagulase Genotype XV.

  • Meiji Soe Aung‎ et al.
  • Microorganisms‎
  • 2019‎

Staphylococcus argenteus, a novel emerging species within Staphylococcus aureus complex (SAC), has been increasingly reported worldwide. In this study, prevalence of S. argenteus among human clinical isolates, and their clonal diversity and genetic characteristics of virulence factors were investigated in Hokkaido, the northern main island of Japan. During a four-month period starting from March 2019, twenty-four S. argenteus and 4330 S. aureus isolates were recovered from clinical specimens (the ratio of S. argenteus to S. aureus :0.0055). Half of S. argenteus isolates (n = 12) belonged to MLST sequence type (ST) 2250 and its single-locus variant, with staphylocoagulase genotype (coa-) XId, while the remaining isolates were assigned to ST2198/coa-XIV (n = 6), and ST1223 with a novel coa-XV identified in this study (n = 6). All the isolates were mecA-negative, and susceptible to all the antimicrobials tested, except for an ST2198 isolate with blaZ and an ST2250 isolate with tet(L) showing resistance to ampicillin and tetracyclines, respectively. Common virulence factors in the S. argenteus isolates were staphylococcal enterotoxin (-like) genes sey, selz, sel26, and sel27 in ST2250, selx in ST2198, and enterotoxin gene cluster (egc-1: seg-sei-sem-sen-seo) in ST1223 isolates, in addition to hemolysin genes (hla, hlb, and hld) distributed universally. Elastin binding protein gene (ebpS) and MSCRAMM family adhesin SdrE gene (sdrE) detected in all the isolates showed high sequence identity among them (> 97%), while relatively lower identity to those of S. aureus (78-92%). Phylogenetically, ebpS, sdrE, selx, sey, selw, sel26, and sel27 of S. argenteus formed clusters distinct from those of S. aureus, unlike sec, selz, tst-1, and staphylokinase gene (sak). The present study revealed the prevalence of S. argenteus among clinical isolates, and presence of three distinct S. argenteus clones (ST2250; ST2198 and ST1223) harboring different virulence factors in northern Japan. ST2198 S. argenteus, a minor clone (strain BN75-like) that had been rarely reported, was first identified in Japan as human isolates.


Fungal Community in Antarctic Soil Along the Retreating Collins Glacier (Fildes Peninsula, King George Island).

  • Juliana Aparecida Dos Santos‎ et al.
  • Microorganisms‎
  • 2020‎

Glacial retreat is one of the most conspicuous signs of warming in Antarctic regions. Glacier soils harbor an active microbial community of decomposers, and under the continuous retraction of glaciers, the soil starts to present a gradient of physical, chemical, and biological factors reflecting regional changes over time. Little is known about the biological nature of fungi in Antarctic glacier soils. In this sense, this work aimed at studying the behavior of fungal community structure from samples of glacier soil collected after glacial retreat (Collins Glacier). A total of 309 fungi distributed in 19 genera were obtained from eleven soil samples. Representatives of the genera Pseudogymnoascus (Ascomycota) and Mortierella (Mortierellomycota) were the most abundant isolates in all samples. The data revealed the presence of filamentous fungi belonging to the phylum Basidiomycota, rarely found in Antarctica. Analysis of the generalized linear models revealed that the distance from the glacier as well as phosphorus and clay were able to modify the distribution of fungal species. Environmental variations proved to have influenced the genera Pseudogymnoascus and Pseudeutorium.


Molecular Surveillance for Bocaparvoviruses and Bufaviruses in the European Hedgehog (Erinaceus europaeus).

  • Vittorio Sarchese‎ et al.
  • Microorganisms‎
  • 2024‎

The presence of bocaparvoviruses (BoVs) and bufaviruses (BuVs) in the European hedgehog (Erinaceus europaeus) was investigated by screening duodenal and liver samples collected from 183 carcasses, delivered to wildlife rescue centers located in northwestern Italy. BoV DNA was detected in 15 animals (8.2%), with prevalences of 7.1% (13/183) and 2.7% (5/183) in intestine and liver samples, respectively. Upon the sequence analyses of the NS1 gene, two highly divergent BoVs (65.5-67.8% nt identities) were identified. Fourteen strains showed the highest identity (98.3-99.4% nt) to the hedgehog BoV strains recently detected in China in Amur hedgehogs (Erinaceus amurensis), whilst four strains were genetically related (98.9-99.4% nt identities) to the porcine BoVs identified in pigs and classified in the species Bocaparvovirus ungulate 4, which included related viruses also found in rats, minks, shrews, and mice. BuV DNA was detected in the duodenal samples of two hedgehogs, with a prevalence rate of 1.1%. The nearly full-length genome of two BuV strains, Hedgehog/331DU-2022/ITA and Hedgehog/1278DU/2019/ITA, was reconstructed. Upon phylogenetic analysis based on the NS and VP aa sequences, the Italian hedgehog BuVs tightly clustered with the BuVs recently identified in the Chinese Amur hedgehogs, within a potential novel candidate species of the genus Protoparvovirus.


Natronomonas salsuginis sp. nov., a New Inhabitant of a Marine Solar Saltern.

  • Ana Durán-Viseras‎ et al.
  • Microorganisms‎
  • 2020‎

A halophilic archaeon, strain F20-122T, was isolated from a marine saltern of Isla Bacuta (Huelva, Spain). Cells were Gram-stain-negative, aerobic, and coccoid in morphology. It grew at 25-50 °C (optimum 37 °C), pH 6.5-9.0 (optimum pH 8.0), and 10-30% (w/v) total salts (optimum 25% salts). The phylogenetic analyses based on the 16S rRNA and rpoB' genes showed its affiliation with the genus Natronomonas and suggested its placement as a new species within this genus. The in silico DNA-DNA hybridization (DDH) and average nucleotide identity (ANI) analyses of this strain against closely related species supported its placement in a new taxon. The DNA G + C content of this isolate was 63.0 mol%. The polar lipids of strain F20-122T were phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol (PG), and phosphatidylglycerol sulfate (PGS). Traces of biphosphatidylglycerol (BPG) and other minor phospholipids and unidentified glycolipids were also present. Based on the phylogenetic, genomic, phenotypic, and chemotaxonomic characterization, we propose strain F20-122T (= CCM 8891T = CECT 9564T = JCM 33320T) as the type strain of a new species within the genus Natronomonas, with the name Natronomonas salsuginis sp. nov. Rhodopsin-like sequence analysis of strain F20-122T revealed the presence of haloarchaeal proton pumps, suggesting a lightmediated ATP synthesis for this strain and a maximum wavelength absorption in the green spectrum.


Identification and Characterization of Rhipicephalus microplus ATAQ Homolog from Haemaphysalis longicornis Ticks and Its Immunogenic Potential as an Anti-Tick Vaccine Candidate Molecule.

  • Paul Franck Adjou Moumouni‎ et al.
  • Microorganisms‎
  • 2023‎

Although vaccines are one of the environmentally friendly means to prevent the spread of ticks, there is currently no commercial vaccine effective against Haemaphysalis longicornis ticks. In this study, we identified, characterized, localized, and evaluated the expression patterns, and tested the immunogenic potential of a homologue of Rhipicephalus microplus ATAQ in H. longicornis (HlATAQ). HlATAQ was identified as a 654 amino acid-long protein present throughout the midgut and in Malpighian tubule cells and containing six full and one partial EGF-like domains. HlATAQ was genetically distant (homology < 50%) from previously reported ATAQ proteins and was expressed throughout tick life stages. Its expression steadily increased (p < 0.001) during feeding, reached a peak, and then decreased slightly with engorgement. Silencing of HlATAQ did not result in a phenotype that was significantly different from the control ticks. However, H. longicornis female ticks fed on a rabbit immunized with recombinant HlATAQ showed significantly longer blood-feeding periods, higher body weight at engorgement, higher egg mass, and longer pre-oviposition and egg hatching periods than control ticks. These findings indicate that the ATAQ protein plays a role in the blood-feeding-related physiological processes in the midgut and Malpighian tubules and antibodies directed against it may affect these tissues and disrupt tick engorgement and oviposition.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: