Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Immunocytochemical analysis of P2X2 in rat circumvallate taste buds.

  • Ruibiao Yang‎ et al.
  • BMC neuroscience‎
  • 2012‎

Our laboratory has shown that classical synapses and synaptic proteins are associated with Type III cells. Yet it is generally accepted that Type II cells transduce bitter, sweet and umami stimuli. No classical synapses, however, have been found associated with Type II cells. Recent studies indicate that the ionotropic purinergic receptors P2X2/P2X3 are present in rodent taste buds. Taste nerve processes express the ionotropic purinergic receptors (P2X2/P2X3). P2X2/P2X3(Dbl-/-) mice are not responsive to sweet, umami and bitter stimuli, and it has been proposed that ATP acts as a neurotransmitter in taste buds. The goal of the present study is to learn more about the nature of purinergic contacts in rat circumvallate taste buds by examining immunoreactivity to antisera directed against the purinergic receptor P2X2.


Immunocytochemical analysis of syntaxin-1 in rat circumvallate taste buds.

  • Ruibiao Yang‎ et al.
  • The Journal of comparative neurology‎
  • 2007‎

Mammalian buds contain a variety of morphological taste cell types, but the type III taste cell is the only cell type that has synapses onto nerve processes. We hypothesize that taste cell synapses utilize the SNARE protein machinery syntaxin, SNAP-25, and synaptobrevin, as is used by synapses in the central nervous system (CNS) for Ca2+-dependent exocytosis. Previous studies have shown that taste cells with synapses display SNAP-25- and synaptobrevin-2-like immunoreactivity (LIR) (Yang et al. [2000a] J Comp Neurol 424:205-215, [2004] J Comp Neurol 471:59-71). In the present study we investigated the presynaptic membrane protein, syntaxin-1, in circumvallate taste buds of the rat. Our results indicate that diffuse cytoplasmic and punctate syntaxin-1-LIR are present in different subsets of taste cells. Diffuse, cytoplasmic syntaxin-1-LIR is present in type III cells while punctate syntaxin-1-LIR is present in type II cells. The punctate syntaxin-1-LIR is believed to be associated with Golgi bodies. All of the synapses associated with syntaxin-1-LIR taste cells are from type III cells onto nerve processes. These results support the proposition that taste cell synapses use classical SNARE machinery such as syntaxin-1 for neurotransmitter release in rat circumvallate taste buds.


Qualitative and quantitative differences between taste buds of the rat and mouse.

  • Huazhi Ma‎ et al.
  • BMC neuroscience‎
  • 2007‎

Numerous electrophysiological, ultrastructural, and immunocytochemical studies on rodent taste buds have been carried out on rat taste buds. In recent years, however, the mouse has become the species of choice for molecular and other studies on sensory transduction in taste buds. Do rat and mouse taste buds have the same cell types, sensory transduction markers and synaptic proteins? In the present study we have used antisera directed against PLCbeta2, alpha-gustducin, serotonin (5-HT), PGP 9.5 and synaptobrevin-2 to determine the percentages of taste cells expressing these markers in taste buds in both rodent species. We also determined the numbers of taste cells in the taste buds as well as taste bud volume.


Three-dimensional reconstructions of mouse circumvallate taste buds using serial blockface scanning electron microscopy: I. Cell types and the apical region of the taste bud.

  • Ruibiao Yang‎ et al.
  • The Journal of comparative neurology‎
  • 2020‎

Taste buds comprise four types of taste cells: three mature, elongate types, Types I-III; and basally situated, immature postmitotic type, Type IV cells. We employed serial blockface scanning electron microscopy to delineate the characteristics and interrelationships of the taste cells in the circumvallate papillae of adult mice. Type I cells have an indented, elongate nucleus with invaginations, folded plasma membrane, and multiple apical microvilli in the taste pore. Type I microvilli may be either restricted to the bottom of the pore or extend outward reaching midway up into the taste pore. Type II cells (aka receptor cells) possess a large round or oval nucleus, a single apical microvillus extending through the taste pore, and specialized "atypical" mitochondria at functional points of contact with nerve fibers. Type III cells (aka "synaptic cells") are elongate with an indented nucleus, possess a single, apical microvillus extending through the taste pore, and are characterized by a small accumulation of synaptic vesicles at points of contact with nerve fibers. About one-quarter of Type III cells also exhibit an atypical mitochondrion near the presynaptic vesicle clusters at the synapse. Type IV cells (nonproliferative "basal cells") have a nucleus in the lower quarter of the taste bud and a foot process extending to the basement membrane often contacting nerve processes along the way. In murine circumvallate taste buds, Type I cells represent just over 50% of the population, whereas Types II, III, and IV (basal cells) represent 19, 15, and 14%, respectively.


Taste Bud Connectome: Implications for Taste Information Processing.

  • Courtney E Wilson‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2022‎

Taste buds contain multiple cell types, two of which mediate transduction of specific taste qualities: Type III cells transduce sour while Type II cells transduce either sweet, or bitter or umami. In order to discern the degree of interaction between different cell types and specificity of connectivity with the afferent nerve fibers (NFs), we employed serial blockface scanning electron microscopy (sbfSEM) through five circumvallate mouse taste buds. Points of contact between Type II and Type III cells are rare and lack morphologically identifiable synapses, suggesting that interaction between these cell types does not occur via synapses. Of the 127 NFs that make synaptic contacts with taste cells in the sampling volume, ∼70% (n = 91) synapse with only one taste cell while 32 fibers synapse exclusively with multiple Type II cells or multiple Type III cells. Our data do not rule out multimodal fibers innervating Type II cells of separate taste qualities. Notably, four fibers (∼3%) synapse with both Type II and Type III cells, forming both mitochondrial and vesicular synapses on the different cell types. Since Type II and Type III cells transduce different taste qualities, these dual connected fibers are not consistent with a absolute labeled-line encoding system. Further, our data reveal considerable variation in both the number of synapses per cell/nerve pair and the number of innervating NFs per taste cell, both of which likely have consequences for encoding taste quality and concentration. Finally, we identify a subset of Type II cells which may represent an immature stage.SIGNIFICANCE STATEMENT Taste buds, the sensory end organs for the sense of taste, contain multiple types of sensory cells, with each responding to one of the primary tastes: salt, sweet, sour, bitter, and umami. In order to determine the degree of interaction between cell types and specificity of connectivity to afferent nerves, we employed serial blockface electron microscopy (EM) of mouse circumvallate taste buds. We find no synapses between cell types within the taste bud suggesting that any interactions are indirect. While the majority of nerve fibers (NFs) connect to a single type of taste cell, 3.1% of the fibers branch to receive input from taste cells of different specificities. Thus, taste cannot entirely be carried along NFs dedicated to single taste qualities.


Chemical synapses without synaptic vesicles: Purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex.

  • Roman A Romanov‎ et al.
  • Science signaling‎
  • 2018‎

Conventional chemical synapses in the nervous system involve a presynaptic accumulation of neurotransmitter-containing vesicles, which fuse with the plasma membrane to release neurotransmitters that activate postsynaptic receptors. In taste buds, type II receptor cells do not have conventional synaptic features but nonetheless show regulated release of their afferent neurotransmitter, ATP, through a large-pore, voltage-gated channel, CALHM1. Immunohistochemistry revealed that CALHM1 was localized to points of contact between the receptor cells and sensory nerve fibers. Ultrastructural and super-resolution light microscopy showed that the CALHM1 channels were consistently associated with distinctive, large (1- to 2-μm) mitochondria spaced 20 to 40 nm from the presynaptic membrane. Pharmacological disruption of the mitochondrial respiratory chain limited the ability of taste cells to release ATP, suggesting that the immediate source of released ATP was the mitochondrion rather than a cytoplasmic pool of ATP. These large mitochondria may serve as both a reservoir of releasable ATP and the site of synthesis. The juxtaposition of the large mitochondria to areas of membrane displaying CALHM1 also defines a restricted compartment that limits the influx of Ca2+ upon opening of the nonselective CALHM1 channels. These findings reveal a distinctive organelle signature and functional organization for regulated, focal release of purinergic signals in the absence of synaptic vesicles.


Microwave processing of gustatory tissues for immunohistochemistry.

  • Amanda Bond‎ et al.
  • Journal of neuroscience methods‎
  • 2013‎

We use immunohistochemistry to study taste cell structure and function as a means to elucidate how taste receptor cells communicate with nerve fibers and adjacent taste cells. This conventional method, however, is time consuming. In the present study we used taste buds from rat circumvallate papillae to compare conventional immunohistochemical tissue processing with microwave processing for the colocalization of several biochemical pathway markers (PLCβ2, syntaxin-1, IP3R3, α-gustducin) and the nuclear stain, Sytox. The results of our study indicate that in microwave versus conventional immunocytochemistry: (1) fixation quality is improved; (2) the amount of time necessary for processing tissue is decreased; (3) antigen retrieval is no longer needed; (4) image quality is superior. In sum, microwave tissue processing of gustatory tissues is faster and superior to conventional immunohistochemical tissue processing for many applications.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: