Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Insights on the Impact of Arbuscular Mycorrhizal Symbiosis on Eucalyptus grandis Tolerance to Drought Stress.

  • Sijia Wang‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Drought stress has a negative impact on plant growth and production. Arbuscular mycorrhizal (AM) fungi, which establish symbioses with most terrestrial vascular plant species, play important roles in improving host plant mineral nutrient acquisition and resistance to drought. However, the physiological and molecular regulation mechanisms occurring in mycorrhizal Eucalyptus grandis coping with drought stress remain unclear. Here, we studied the physiological changes and mitogen-activated protein kinase (MAPK) cascade gene expression profiles of E. grandis associated with AM fungi under drought stress. The results showed that colonization by AM fungi significantly enhanced plant growth, with higher plant biomass, shoot height, root length, and relative water content (RWC) under drought conditions. Mycorrhizal plants had lower levels of accumulation of proline, malondialdehyde (MDA), H2O2, and O2·- than seedlings not colonized with AM fungi. In addition, mycorrhizal E. grandis also had higher peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities under drought conditions, improving the antioxidant system response. Eighteen MAPK cascade genes were isolated from E. grandis, and the expression levels of the MAPK cascade genes were positively induced by symbiosis with AM fungi, which was correlated with changes in the proline, MDA, H2O2, and O2·- contents and POD, SOD, and CAT activities. In summary, our results showed that AM symbiosis enhances E. grandis drought tolerance by regulating plant antioxidation abilities and MAPK cascade gene expression. IMPORTANCE Arbuscular mycorrhizal (AM) fungi play an important role in improving plant growth and development under drought stress. The MAPK cascade may regulate many physiological and biochemical processes in plants in response to drought stress. Previous studies have shown that there is a complex regulatory network between the plant MAPK cascade and drought stress. However, the relationship between the E. grandis MAPK cascade and AM symbiosis in coping with drought remains to be investigated. Our results suggest that AM fungi could improve plant drought tolerance mainly by improving the antioxidant ability to protect plants from reactive oxygen species (ROS) and alleviate oxidative stress damage. The expression of the MAPK cascade genes was induced in mycorrhizal E. grandis seedlings under drought stress. This study revealed that MAPK cascade regulation is of special significance for improving the drought tolerance of E. grandis. This study provides a reference for improving mycorrhizal seedling cultivation under stress.


A Eucalyptus Pht1 Family Gene EgPT8 Is Essential for Arbuscule Elongation of Rhizophagus irregularis.

  • Xianrong Che‎ et al.
  • Microbiology spectrum‎
  • 2022‎

The majority of vascular flowering plants can establish arbuscular mycorrhizal (AM) symbiosis with AM fungi. These associations contribute to plant health and plant growth against various environmental stresses. In the mutualistic endosymbiosis, the AM fungi deliver phosphate (Pi) to the host root through highly branched hyphae called arbuscules. The molecular mechanisms of Pi transfer from AM fungi to the plant have been determined, which are dominated by AM-specific Pi transporters belonging to the PHOSPHATE TRANSPORTER 1 (Pht1) family within the subfamily I. However, it is unknown whether Pht1 family proteins are involved in other regulations in AM symbiosis. Here, we report that the expression of EgPT8 is specifically activated by AM fungus Rhizophagus irregularis and is localized in root cortical cells containing arbuscules. Interestingly, knockdown of EgPT8 function does not affect the Eucalyptus grandis growth, total phosphorous (P) concentration, and arbuscule formation; however, the size of mature arbuscules was significantly suppressed in the RNAi-EgPT8 lines. Heterogeneous expression of EgPT4, EgPT5, and EgPT8 in the Medicago truncatula mutant mtpt4-2 indicates that EgPT4 and EgPT5 can fully complement the defects of mutant mtpt4-2 in mycorrhizal Pi uptake and arbuscule formation, while EgPT8 cannot complement the defective AM phenotype of the mtpt4-2 mutant. Based on our results, we propose that the AM fungi-specific subfamily I transporter EgPT8 has novel functions and is essential to arbuscule elongation. IMPORTANCE Arbuscular mycorrhizal (AM) formation in host root cortical cells is initiated by exchanges of diffusible molecules, among which Pi uptake is known as the important feature of AM fungi on symbiosis functioning. Over the last two decades, it has been repeatedly proven that most vascular plants harbor two or more AM-specific Pht1 proteins; however, there is no direct evidence regarding the potential link among these Pi transporters at the symbiotic interface. This work revealed a novel function of a structurally conserved protein involved in lateral arbuscule development. In total, we confirmed that three AM-specific Pht1 family proteins are nonredundant in Eucalyptus grandis and that EgPT8 is responsible for fungal arbuscule elongation of Rhizophagus irregularis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: