Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Direct Z-Scheme Cs2O-Bi2O3-ZnO Heterostructures as Efficient Sunlight-Driven Photocatalysts.

  • Abdo Hezam‎ et al.
  • ACS omega‎
  • 2018‎

Limited light absorption, inefficient electron-hole separation, and unsuitable positions of conduction band bottom and/or valence band top are three major critical issues associated with high-efficiency photocatalytic water treatment. An attempt has been carried out here to address these issues through the synthesis of direct Z-scheme Cs2O-Bi2O3-ZnO heterostructures via a facile, fast, and economic method: solution combustions synthesis. The photocatalytic performances are examined by the 4-chlorophenol degradation test under simulated sunlight irradiation. UV-vis diffuse reflectance spectroscopy analysis, electrochemical impedance test, and the observed transient photocurrent responses prove not only the significant role of Cs2O in extending light absorption to visible and near-infrared regions but also its involvement in charge carrier separation. Radical-trapping experiments verify the direct Z-scheme approach followed by the charge carriers in heterostructured Cs2O-Bi2O3-ZnO photocatalysts. The Z-scheme charge carrier pathway induced by the presence of Cs2O has emerged as the reason behind the efficient charge carrier separation and high photocatalytic activity.


Sunlight-Driven Combustion Synthesis of Defective Metal Oxide Nanostructures with Enhanced Photocatalytic Activity.

  • Abdo Hezam‎ et al.
  • ACS omega‎
  • 2019‎

Synthesis of metal oxide nanostructures through combustion routes is a promising technique owing to its simplicity, rapidity, scalability, and cost-effectiveness. Herein, a sunlight-driven combustion approach is developed to synthesize pristine metal oxides and their heterostructures. Sunlight, a sustainable energy source, is used not only to initiate the combustion reaction but also to create oxygen vacancies on the metal oxide surface. ZnO nanostructures are successfully synthesized using this novel approach, and the products exhibit higher photocatalytic activity in the decomposition of methyl orange (MO) than ZnO nanostructures synthesized by the conventional methods. The higher photocatalytic activity is due to the narrower band gap, higher porosity, smaller and more uniform particle size, surface oxygen vacancies, as well as the enhanced exciton dissociation efficiency induced by the sunlight. Porous Fe3O4 nanostructures are also prepared using this environmentally benign method. Surprisingly, few-layer Bi2O3 nanosheets are successfully obtained using the sunlight-driven combustion approach. Moreover, the approach developed here is used to synthesize Bi2O3/ZnO heterostructure exhibiting a structure of few-layer Bi2O3 nanosheets decorated with ZnO nanoparticles. Bi2O3 nanosheets and Bi2O3/ZnO heterostructures synthesized by sunlight-driven combustion route exhibit higher photocatalytic activity than their counterparts synthesized by the conventional solution combustion method. This work illuminates a potential cost-effective method to synthesize defective metal oxide nanostructures at scale.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: