Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus.

  • Matthew L Rowe‎ et al.
  • General and comparative endocrinology‎
  • 2012‎

Neuronal secretion of peptide signaling molecules (neuropeptides) is an evolutionarily ancient feature of nervous systems. Here we report the identification of 20 cDNAs encoding putative neuropeptide precursors in the sea urchin Strongylocentrotus purpuratus (Phylum Echinodermata), providing new insights on the evolution and diversity of neuropeptides. Identification of a gonadotropin-releasing hormone-like peptide precursor (SpGnRHP) is consistent with the widespread phylogenetic distribution of GnRH-type neuropeptides in the bilateria. A protein (SpTRHLP) comprising multiple copies of peptides that share structural similarity with thyrotropin-releasing hormone (TRH) is the first TRH-like precursor to be identified in an invertebrate. SpCTLP is the first calcitonin-like peptide with two N-terminally located cysteine residues to be found in a non-chordate species. Discovery of two proteins (SpPPLNP1, SpPPLNP2) comprising homologs of molluscan pedal peptides and arthropod orcokinins indicates the existence of a bilaterian family of pedal peptide/orcokinin-type neuropeptides. Other proteins identified contain peptides that do not share apparent sequence similarity with known neuropeptides. These include Spnp5, which comprises multiple copies of C-terminally amidated peptides that have an N-terminal Ala-Asn motif (AN peptides), and Spnp9, Spnp10 and Spnp12, which contain putative neuropeptides with a C-terminal Phe-amide, Ser-amide or Pro-amide, respectively. Several proteins (Spnp11, 14, 15, 16, 17, 18, 19 and 20) contain putative neuropeptides with multiple cysteine residues (2, 6 or 8), which may mediate formation of intramolecular or intermolecular disulphide bridges. Looking ahead, the identification of these neuropeptide precursors in S. purpuratus has provided a strong basis for a comprehensive analysis of neuropeptide function in this model echinoderm species.


Neuropeptidergic Systems in Pluteus Larvae of the Sea Urchin Strongylocentrotus purpuratus: Neurochemical Complexity in a "Simple" Nervous System.

  • Natalie J Wood‎ et al.
  • Frontiers in endocrinology‎
  • 2018‎

The nervous system of the free-living planktonic larvae of sea urchins is relatively "simple," but sufficiently complex to enable sensing of the environment and control of swimming and feeding behaviors. At the pluteus stage of development, the nervous system comprises a central ganglion of serotonergic neurons located in the apical organ and sensory and motor neurons associated with the ciliary band and the gut. Neuropeptides are key mediators of neuronal signaling in nervous systems but currently little is known about neuropeptidergic systems in sea urchin larvae. Analysis of the genome sequence of the sea urchin Strongylocentrotus purpuratus has enabled the identification of 38 genes encoding neuropeptide precursors (NP) in this species. Here we characterize for the first time the expression of nine of these NP genes in S. purpuratus larvae, providing a basis for a functional understanding of the neurochemical organization of the larval nervous system. In order to accomplish this we used single and double in situ hybridization, coupled with immunohistochemistry, to investigate NP gene expression in comparison with known markers (e.g., the neurotransmitter serotonin). Several sub-populations of cells that express one or more NP genes were identified, which are located in the apica organ, at the base of the arms, around the mouth, in the ciliary band and in the mid- and fore-gut. Furthermore, high levels of cell proliferation were observed in neurogenic territories, consistent with an increase in the number of neuropeptidergic cells at late larval stages. This study has revealed that the sea urchin larval nervous system is far more complex at a neurochemical level than was previously known. Our NP gene expression map provides the basis for future work, aimed at understanding the role of diverse neuropeptides in control of various aspects of embryonic and larval behavior.


Discovery of a second SALMFamide gene in the sea urchin Strongylocentrotus purpuratus reveals that L-type and F-type SALMFamide neuropeptides coexist in an echinoderm species.

  • Matthew L Rowe‎ et al.
  • Marine genomics‎
  • 2010‎

The SALMFamides are a family of neuropeptides that act as muscle relaxants in the phylum Echinodermata. Two types of SALMFamides have been identified in echinoderms: firstly, the prototypical L-type SALMFamide peptides with the C-terminal sequence Leu-X-Phe-NH(2) (where X is variable), which have been identified in several starfish species and in the sea cucumber Holothuria glaberrima; secondly, F-type SALMFamide peptides with the C-terminal sequence Phe-X-Phe-NH(2), which have been identified in the sea cucumber Apostichopus japonicus. However, the genetic basis and functional significance of the occurrence of these two types of SALMFamides in echinoderms are unknown. Here we have obtained a new insight on this issue with the discovery that in the sea urchin Strongylocentrotus purpuratus there are two SALMFamide genes. In addition to a gene encoding seven putative F-type SALMFamide neuropeptides with the C-terminal sequence Phe-X-Phe-NH(2) (SpurS1-SpurS7), which has been reported previously (Elphick and Thorndyke, 2005; J. Exp. Biol., 208, 4273-4282), we have identified a gene that is expressed in the nervous system and that encodes a precursor of two putative L-type SALMFamide neuropeptides with the C-terminal sequences Ile-His-Phe-NH(2) (SpurS8) and Leu-Leu-Phe-NH(2) (SpurS9). Our discovery has revealed for the first time that L-type and F-type SALMFamide neuropeptides can coexist in an echinoderm species but are encoded by different genes. We speculate that this feature of S. purpuratus may apply to other echinoderms and further insights on this issue will be possible if genomic and/or neural cDNA sequence data are obtained for other echinoderm species.


Discovery of sea urchin NGFFFamide receptor unites a bilaterian neuropeptide family.

  • Dean C Semmens‎ et al.
  • Open biology‎
  • 2015‎

Neuropeptides are ancient regulators of physiology and behaviour, but reconstruction of neuropeptide evolution is often difficult owing to lack of sequence conservation. Here, we report that the receptor for the neuropeptide NGFFFamide in the sea urchin Strongylocentrotus purpuratus (phylum Echinodermata) is an orthologue of vertebrate neuropeptide-S (NPS) receptors and crustacean cardioactive peptide (CCAP) receptors. Importantly, this has facilitated reconstruction of the evolution of two bilaterian neuropeptide signalling systems. Genes encoding the precursor of a vasopressin/oxytocin-type neuropeptide and its receptor duplicated in a common ancestor of the Bilateria. One copy of the precursor retained ancestral features, as seen in highly conserved vasopressin/oxytocin-neurophysin-type precursors. The other copy diverged, but this took different courses in protostomes and deuterostomes. In protostomes, the occurrence of a disulfide bridge in neuropeptide product(s) of the precursor was retained, as in CCAP, but with loss of the neurophysin domain. In deuterostomes, we see the opposite scenario-the neuropeptides lost the disulfide bridge, and neurophysin was retained (as in the NGFFFamide precursor) but was subsequently lost in vertebrate NPS precursors. Thus, the sea urchin NGFFFamide precursor and receptor are 'missing links' in the evolutionary history of neuropeptides that control ecdysis in arthropods (CCAP) and regulate anxiety in humans (NPS).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: